scholarly journals The Potential of High-Anthocyanin Purple Rice as a Functional Ingredient in Human Health

Antioxidants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 833
Author(s):  
Supapohn Yamuangmorn ◽  
Chanakan Prom-u-Thai

Purple rice is recognized as a source of natural anthocyanin compounds among health-conscious consumers who employ rice as their staple food. Anthocyanin is one of the major antioxidant compounds that protect against the reactive oxygen species (ROS) that cause cellular damage in plants and animals, including humans. The physiological role of anthocyanin in plants is not fully understood, but the benefits to human health are apparent against both chronic and non-chronic diseases. This review focuses on anthocyanin synthesis and accumulation in the whole plant of purple rice, from cultivation to the processed end products. The anthocyanin content in purple rice varies due to many factors, including genotype, cultivation, and management as well as post-harvest processing. The cultivation method strongly influences anthocyanin content in rice plants; water conditions, light quantity and quality, and available nutrients in the soil are important factors, while the low stability of anthocyanins means that they can be dramatically degraded under high-temperature conditions. The application of purple rice anthocyanins has been developed in both functional food and other purposes. To maximize the benefits of purple rice to human health, understanding the factors influencing anthocyanin synthesis and accumulation during the entire process from cultivation to product development can be a path for success.

Agriculture ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 212
Author(s):  
Giuseppe Mannino ◽  
Carla Gentile ◽  
Andrea Ertani ◽  
Graziella Serio ◽  
Cinzia Margherita Bertea

In the past century, plant biostimulants have been increasingly used in agriculture as innovative and sustainable practice. Plant biostimulants have been mainly investigated as potential agents able to mitigate abiotic stress. However, few information is available about their ability to influence fruit quality or change fruit phytochemical composition. In particular, very little is known about their effects on anthocyanin synthesis and accumulation. Due to the increasing demand of consumers for healthier foods with high nutraceutical values, this review tries to fill the gap between anthocyanin content and biostimulant application. Here, we elucidate the chemical structure, biosynthetic pathway, plant distribution, and physiological role of anthocyanins in plants. Moreover, we discuss the potential implications for human health derived from the consumption of foods rich in these molecules. Finally, we report on literature data concerning the changes in anthocyanin content and profile after the application of biostimulant products on the most common anthocyanin-containing foods.


Molecules ◽  
2021 ◽  
Vol 26 (7) ◽  
pp. 1887
Author(s):  
Mei Han ◽  
Can Zhang ◽  
Peter Suglo ◽  
Shuyue Sun ◽  
Mingyao Wang ◽  
...  

L-aspartate (Asp) serves as a central building block, in addition to being a constituent of proteins, for many metabolic processes in most organisms, such as biosynthesis of other amino acids, nucleotides, nicotinamide adenine dinucleotide (NAD), the tricarboxylic acid (TCA) cycle and glycolysis pathway intermediates, and hormones, which are vital for growth and defense. In animals and humans, lines of data have proved that Asp is indispensable for cell proliferation. However, in plants, despite the extensive study of the Asp family amino acid pathway, little attention has been paid to the function of Asp through the other numerous pathways. This review aims to elucidate the most important aspects of Asp in plants, from biosynthesis to catabolism and the role of Asp and its metabolic derivatives in response to changing environmental conditions. It considers the distribution of Asp in various cell compartments and the change of Asp level, and its significance in the whole plant under various stresses. Moreover, it provides evidence of the interconnection between Asp and phytohormones, which have prominent functions in plant growth, development, and defense. The updated information will help improve our understanding of the physiological role of Asp and Asp-borne metabolic fluxes, supporting the modular operation of these networks.


2019 ◽  
Vol 20 (21) ◽  
pp. 5423 ◽  
Author(s):  
Mirza Muhammad Fahd Qadir ◽  
Dagmar Klein ◽  
Silvia Álvarez-Cubela ◽  
Juan Domínguez-Bendala ◽  
Ricardo Luis Pastori

Cellular stress, combined with dysfunctional, inadequate mitochondrial phosphorylation, produces an excessive amount of reactive oxygen species (ROS) and an increased level of ROS in cells, which leads to oxidation and subsequent cellular damage. Because of its cell damaging action, an association between anomalous ROS production and disease such as Type 1 (T1D) and Type 2 (T2D) diabetes, as well as their complications, has been well established. However, there is a lack of understanding about genome-driven responses to ROS-mediated cellular stress. Over the last decade, multiple studies have suggested a link between oxidative stress and microRNAs (miRNAs). The miRNAs are small non-coding RNAs that mostly suppress expression of the target gene by interaction with its 3’untranslated region (3′UTR). In this paper, we review the recent progress in the field, focusing on the association between miRNAs and oxidative stress during the progression of diabetes.


2004 ◽  
Vol 14 (2) ◽  
pp. 93-107 ◽  
Author(s):  
Christophe Bailly

Active oxygen species (AOS) are involved in various aspects of seed physiology. Their generation, which occurs during seed desiccation, germination and ageing, may lead to oxidative stress and cellular damage, resulting in seed deterioration. However, cells are endowed with detoxifying enzymes and antioxidant compounds that scavenge AOS and participate in seed survival. The detoxifying mechanisms play a key role in acquisition of desiccation tolerance of developing seeds, completion of seed germination and seed storability. However, AOS must also be regarded as molecules intervening in cellular signalling. They are involved in growth processes occurring at early embryogenesis during seed development, and participate in the mechanisms underlying radicle protrusion during seed germination. AOS might also have a regulatory function in the changes in gene expression during seed development, dormancy and germination. Their interplay with other molecules, particularly with hormones such as abscisic acid, suggests that they should be considered as key components of an integrated signalling network involved in many aspects of seed physiology.


2020 ◽  
Vol 2020 ◽  
pp. 1-9 ◽  
Author(s):  
Elena Frigato ◽  
Mascia Benedusi ◽  
Anna Guiotto ◽  
Cristiano Bertolucci ◽  
Giuseppe Valacchi

Circadian rhythms are biological oscillations that occur with an approximately 24 h period and optimize cellular homeostasis and responses to environmental stimuli. A growing collection of data suggests that chronic circadian disruption caused by novel lifestyle risk factors such as shift work, travel across time zones, or irregular sleep-wake cycles has long-term consequences for human health. Among the multiplicity of physiological systems hypothesized to have a role in the onset of pathologies in case of circadian disruption, there are redox-sensitive defensive pathways and inflammatory machinery. Due to its location and barrier physiological role, the skin is a prototypical tissue to study the influence of environmental insults induced OxInflammation disturbance and circadian system alteration. To better investigate the link among outdoor stressors, OxInflammation, and circadian system, we tested the differential responses of keratinocytes clock synchronized or desynchronized, in an in vitro inflammatory model exposed to O3. Being both NRF2 and NF-κB two key redox-sensitive transcription factors involved in cellular redox homeostasis and inflammation, we analyzed their activation and expression in challenged keratinocytes by O3. Our results suggest that a synchronized circadian clock not only facilitates the protective role of NRF2 in terms of a faster and more efficient defensive response against environmental insults but also moderates the cellular damage resulting from a condition of chronic inflammation. Our results bring new insights on the role of circadian clock in regulating the redox-inflammatory crosstalk influenced by O3 and possibly can be extrapolated to other pollutants able to affect the oxinflammatory cellular processes.


2006 ◽  
Vol 5 (5) ◽  
pp. 861-870 ◽  
Author(s):  
Simone Harder ◽  
Meike Bente ◽  
Kerstin Isermann ◽  
Iris Bruchhaus

ABSTRACT Leishmania promastigote cells transmitted by the insect vector get phagocytosed by macrophages and convert into the amastigote form. During development and transformation, the parasites are exposed to various concentrations of reactive oxygen species, which can induce programmed cell death (PCD). We show that a mitochondrial peroxiredoxin (LdmPrx) protects Leishmania donovani from PCD. Whereas this peroxiredoxin is restricted to the kinetoplast area in promastigotes, it covers the entire mitochondrion in amastigotes, accompanied by dramatically increased expression. A similar change in the expression pattern was observed during the growth of Leishmania from the early to the late logarithmic phase. Recombinant LdmPrx shows typical peroxiredoxin-like enzyme activity. It is able to detoxify organic and inorganic peroxides and prevents DNA from hydroxyl radical-induced damage. Most notably, Leishmania parasites overexpressing this peroxiredoxin are protected from hydrogen peroxide-induced PCD. This protection is also seen in promastigotes grown to the late logarithmic phase, also characterized by high expression of this peroxiredoxin. Apparently, the physiological role of this peroxiredoxin is stabilization of the mitochondrial membrane potential and, as a consequence, inhibition of PCD through removal of peroxides.


Sign in / Sign up

Export Citation Format

Share Document