scholarly journals Physiological Functions of Thiol Peroxidases (Gpx1 and Prdx2) during Xenopus laevis Embryonic Development

Antioxidants ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1636
Author(s):  
Hongchan Lee ◽  
Na Young Lee ◽  
Youni Kim ◽  
Hong-Seok Choi ◽  
Tayaba Ismail ◽  
...  

Glutathione peroxidase 1 (Gpx1) and peroxiredoxin 2 (Prdx2) belong to the thiol peroxidase family of antioxidants, and have been studied for their antioxidant functions and roles in cancers. However, the physiological significance of Gpx1 and Prdx2 during vertebrate embryogenesis are lacking. Currently, we investigated the functional roles of Gpx1 and Prdx2 during vertebrate embryogenesis using Xenopus laevis as a vertebrate model. Our investigations revealed the zygotic nature of gpx1 having its localization in the eye region of developing embryos, whereas prdx2 exhibited a maternal nature and were localized in embryonic ventral blood islands. Furthermore, the gpx1-morphants exhibited malformed eyes with incompletely detached lenses. However, the depletion of prdx2 has not established its involvement with embryogenesis. A molecular analysis of gpx1-depleted embryos revealed the perturbed expression of a cryba1-lens-specific marker and also exhibited reactive oxygen species (ROS) accumulation in the eye regions of gpx1-morphants. Additionally, transcriptomics analysis of gpx1-knockout embryos demonstrated the involvement of Wnt, cadherin, and integrin signaling pathways in the development of malformed eyes. Conclusively, our findings indicate the association of gpx1 with a complex network of embryonic developmental pathways and ROS responses, but detailed investigation is a prerequisite in order to pinpoint the mechanistic details of these interactions.

2018 ◽  
Vol 17 (2) ◽  
pp. 117-121
Author(s):  
Sun Maw-Sheng ◽  
Liang Chun-Ya ◽  
Hsieh Po-Chun ◽  
Kuo Chan-Yen

Apoptosis of hepatocyte, under ischemia/reperfusion (IR) conditions, has been identified as an essential process in the progression of liver transplantation. Under these conditions, mitochondria can become a threat to the cell because of their capacity to generate reactive oxygen species (ROS). Additionally, ROS overproduction may induce inflammation. As ROS accumulation appears to cause hepatocyte damage or death, there has been considerable interest in identifying the candidate natural products involved and in developing strategies to reduce oxidative stress. In this study, we use Danshensu as a candidate product to speculate whether has the protective effect on apoptotic hepatocyte upon IR. To speculate the apoptotic phenomena was reversed by Danshensu, we detected the p53, cleaved-caspase 3 expression by western blotting, as well as caspase-3 activity. Additionally, we analyzed the ROS levels by 2′,7′-dichlorofluorescin diacetate (DCF-DA) staining. We also detected the cell viability by WST-1. Results showed that Danshensu alleviated hypoxia-caused cell apoptosis via ROS overproduction. We suggested that Danshensu is a good strategy for treating hepatocyte damage upon IR.


Rice ◽  
2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Jingluan Han ◽  
Xiaoyu Wang ◽  
Fengpin Wang ◽  
Zhe Zhao ◽  
Gousi Li ◽  
...  

Abstract Background Avr-Pita was the first effector identified in the blast fungus (Magnaporthe oryzae)–rice (Oryza sativa) pathosystem. However, the molecular mechanism underlying its effects on the host plant has remained a long-standing mystery. Results Here, we report that ectopically expressing Avr-Pita in rice enhances susceptibility to M. oryzae and suppresses pathogen-associated molecular pattern (PAMP)-triggered defense responses. Avr-Pita targets the host mitochondria and interacts with the cytochrome c oxidase (COX) assembly protein OsCOX11, a key regulator of mitochondrial reactive oxygen species (ROS) metabolism in rice. Overexpressing Avr-Pita or OsCOX11 increased COX activity and decreased ROS accumulation triggered by the fungal PAMP chitin. OsCOX11-overexpressing plants showed increased susceptibility to M. oryzae, whereas OsCOX11-knockdown plants showed resistance to M. oryzae. Conclusions Taken together, these findings suggest that the fungal pathogen M. oryzae delivers the effector Avr-Pita to the host plant, where it enhances COX activity thus decreasing ROS accumulation. Therefore, this effector suppresses host innate immunity by perturbing ROS metabolism in the mitochondria.


2014 ◽  
Vol 20 (5) ◽  
pp. 1249-1258 ◽  
Author(s):  
Tamer E. Fandy ◽  
Anchalee Jiemjit ◽  
Manjusha Thakar ◽  
Paulette Rhoden ◽  
Lauren Suarez ◽  
...  

2018 ◽  
Vol 19 (7) ◽  
pp. 2075 ◽  
Author(s):  
Jose Islas ◽  
Jorge Moreno-Cuevas

In this review, we summarize the latest research pertaining to MicroRNAs (miRs) related to cardiovascular diseases. In today’s molecular age, the key clinical aspects of diagnosing and treating these type of diseases are crucial, and miRs play an important role. Therefore, we have made a thorough analysis discussing the most important candidate protagonists of many pathways relating to such conditions as atherosclerosis, heart failure, myocardial infarction, and congenital heart disorders. We approach miRs initially from the fundamental molecular aspects and look at their role in developmental pathways, as well as regulatory mechanisms dysregulated under specific cardiovascular conditions. By doing so, we can better understand their functional roles. Next, we look at therapeutic aspects, including delivery and inhibition techniques. We conclude that a personal approach for treatment is paramount, and so understanding miRs is strategic for cardiovascular health.


2020 ◽  
Author(s):  
Micaela Lasser ◽  
Jessica Bolduc ◽  
Luke Murphy ◽  
Caroline O'Brien ◽  
Sangmook Lee ◽  
...  

Copy number variants (CNVs) associated with neurodevelopmental disorders are characterized by extensive phenotypic heterogeneity. In particular, one CNV was identified in a subset of children clinically diagnosed with intellectual disabilities (ID) that results in a hemizygous deletion of multiple genes at chromosome 16p12.1. In addition to ID, individuals with this deletion display a variety of symptoms including microcephaly, seizures, cardiac defects, and growth retardation. Moreover, patients also manifest severe craniofacial abnormalities, such as micrognathia, cartilage malformation of the ears and nose, and facial asymmetries; however, the function of the genes within the 16p12.1 region have not been studied in the context of vertebrate craniofacial development. The craniofacial tissues affected in patients with this deletion all derive from the same embryonic precursor, the cranial neural crest, leading to the hypothesis that one or more of the 16p12.1 genes may be involved in regulating neural crest cell (NCC)-related processes. To examine this, we characterized the developmental role of the 16p12.1-affected gene orthologs, polr3e, mosmo, uqcrc2, and cdr2, during craniofacial morphogenesis in the vertebrate model system, Xenopus laevis. While the currently-known cellular functions of these genes are diverse, we find that they share similar expression patterns along the neural tube, pharyngeal arches, and later craniofacial structures. As these genes show co-expression in the pharyngeal arches where NCCs reside, we sought to elucidate the effect of individual gene depletion on craniofacial development and NCC migration. We find that reduction of several 16p12.1 genes significantly disrupts craniofacial and cartilage formation, pharyngeal arch migration, as well as NCC specification and motility. Thus, we have determined that some of these genes play an essential role during vertebrate craniofacial patterning by regulating specific processes during NCC development, which may be an underlying mechanism contributing to the craniofacial defects associated with the 16p12.1 deletion.


2021 ◽  
Author(s):  
liang xu ◽  
Jia-Qian Song ◽  
yuelin wang ◽  
Xiao-Han Liu ◽  
Xue-Li Li ◽  
...  

Abstract Plants have evolved a lot of strategies to improve salt tolerance to cope with salt stress. Recent studies have suggested that thymol (a nature medicine) enhances the plant tolerance against abiotic stresses, but the mechanisms are rarely known. Here, we found that thymol played an important role in maintaining root growth under salt stress. Thymol rescued root growth from salt stress via ameliorating ROS (reactive oxygen species) accumulation, lipid peroxidation, and cell death. In addition, thymol enhanced the level of NO (nitric oxide) and GSH (glutathione) to repress ROS accumulation, further protecting the stability of cell membrane. Thymol-induced Na+ efflux in roots and leaves under salt stress may depend on the upregulation of SOS1, HKT1 and NHX1. Consequently, all of these evidences suggested that thymol improved tobacco salt tolerance via enhancing NO and GSH content as well as inducing Na+ efflux.


2017 ◽  
Vol 114 (15) ◽  
pp. E3081-E3090 ◽  
Author(s):  
Yi Ding ◽  
Diego Ploper ◽  
Eric A. Sosa ◽  
Gabriele Colozza ◽  
Yuki Moriyama ◽  
...  

The earliest event in Xenopus development is the dorsal accumulation of nuclear β-catenin under the influence of cytoplasmic determinants displaced by fertilization. In this study, a genome-wide approach was used to examine transcription of the 43,673 genes annotated in the Xenopus laevis genome under a variety of conditions that inhibit or promote formation of the Spemann organizer signaling center. Loss of function of β-catenin with antisense morpholinos reproducibly reduced the expression of 247 mRNAs at gastrula stage. Interestingly, only 123 β-catenin targets were enriched on the dorsal side and defined an early dorsal β-catenin gene signature. These genes included several previously unrecognized Spemann organizer components. Surprisingly, only 3 of these 123 genes overlapped with the late Wnt signature recently defined by two other groups using inhibition by Dkk1 mRNA or Wnt8 morpholinos, which indicates that the effects of β-catenin/Wnt signaling in early development are exquisitely regulated by stage-dependent mechanisms. We analyzed transcriptome responses to a number of treatments in a total of 46 RNA-seq libraries. These treatments included, in addition to β-catenin depletion, regenerating dorsal and ventral half-embryos, lithium chloride treatment, and the overexpression of Wnt8, Siamois, and Cerberus mRNAs. Only some of the early dorsal β-catenin signature genes were activated at blastula whereas others required the induction of endomesoderm, as indicated by their inhibition by Cerberus overexpression. These comprehensive data provide a rich resource for analyzing how the dorsal and ventral regions of the embryo communicate with each other in a self-organizing vertebrate model embryo.


Drug Research ◽  
2018 ◽  
Vol 69 (06) ◽  
pp. 323-329 ◽  
Author(s):  
Mohaddeseh Sadat Alavi ◽  
Sahar Fanoudi ◽  
Ameneh Veisi Fard ◽  
Mohammad Soukhtanloo ◽  
Mahmoud Hosseini ◽  
...  

Abstract Objectives Researches have been shown that glutamic acid (GA) or quinolinic acid (QA) can play role in neuroinflammatory and demyelinating diseases including multiple sclerosis (MS), mainly via oligodendrocytes activation and extreme free radicals generation. Recent studies have demonstrated that safranal, an active constituent of Crocus sativus, has several pharmacological effects such as antioxidant, anti-inflammatory and neuroprotective properties. Since there is no data about the impact of safranal on MS, this study was designed to investigate the protective effect of safranal on OLN-93 oligodendrocytes injury induced by GA or QA. Materials and Methods At first, the potential toxic effect of safranal on OLN-93 viability was evaluated. Also, the cells were pretreated with safranal (0.1, 1, 10, 50, 100 and 200 μM) for 2 h and then subjected to GA (16 mM) or QA (8 mM) toxicity for 24 h, in which the same treatments were applied. The cell viability and parameters of redox status such as the levels of intracellular reactive oxygen species (ROS) and lipid peroxidation were measured. Results Safranal at concentration ranges of 1–800 μM had no toxic effect on cell viability (p>0.05). Treatment with safranal significantly increased cell viability following GA or QA insults at concentrations higher than 1 μM (p<0.01). The cytoprotective potential of safranal was also accompanied by decreased ROS accumulation (p<0.001) and malondialdehyde level (p<0.001) following GA or QA insults. Conclusion The data suggests that safranal exhibits oligoprotection potential by means of inhibiting oxidative stress parameters.


2019 ◽  
Vol 116 (20) ◽  
pp. 10064-10071 ◽  
Author(s):  
Yuzhi Hong ◽  
Jie Zeng ◽  
Xiuhong Wang ◽  
Karl Drlica ◽  
Xilin Zhao

Antimicrobial efficacy, which is central to many aspects of medicine, is being rapidly eroded by bacterial resistance. Since new resistance can be induced by antimicrobial action, highly lethal agents that rapidly reduce bacterial burden during infection should help restrict the emergence of resistance. To improve lethal activity, recent work has focused on toxic reactive oxygen species (ROS) as part of the bactericidal activity of diverse antimicrobials. We report that whenEscherichia coliwas subjected to antimicrobial stress and the stressor was subsequently removed, both ROS accumulation and cell death continued to occur. Blocking ROS accumulation by exogenous mitigating agents slowed or inhibited poststressor death. Similar results were obtained with a temperature-sensitive mutational inhibition of DNA replication. Thus, bacteria exposed to lethal stressors may not die during treatment, as has long been thought; instead, death can occur after plating on drug-free agar due to poststress ROS-mediated toxicity. Examples are described in which (i) primary stress-mediated damage was insufficient to kill bacteria due to repair; (ii) ROS overcame repair (i.e., protection from anti-ROS agents was reduced by repair deficiencies); and (iii) killing was reduced by anti-oxidative stress genes acting before stress exposure. Enzymatic suppression of poststress ROS-mediated lethality by exogenous catalase supports a causal rather than a coincidental role for ROS in stress-mediated lethality, thereby countering challenges to ROS involvement in antimicrobial killing. We conclude that for a variety of stressors, lethal action derives, at least in part, from stimulation of a self-amplifying accumulation of ROS that overwhelms the repair of primary damage.


Sign in / Sign up

Export Citation Format

Share Document