scholarly journals Antioxidant and Functional Activities of MRPs Derived from Different Sugar–Amino Acid Combinations and Reaction Conditions

Antioxidants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1840
Author(s):  
David D. Kitts

The Maillard reaction (MR), or non-enzymatic browning, involves reducing sugars reacting with amino acids, peptides, or proteins when heated to produce an abundance of products that contribute to sensory, nutritional, and functional qualities of the food system. One example of an important functional quality of MR relates to antioxidant capacity, which has relevance to preserve food quality and also to extend a potential role that may promote gastrointestinal health. The addition of Alphacel (10%), a non-reactive polysaccharide, to MR reactants produced small significant (p < 0.05) reductions in yield of soluble Maillard reaction products (MRPs), sugar loss, and color change of products formed respectively, for reducing sugars. A similar effect was also noticed for different free-radical scavenging capacity (p < 0.05), using chemical (e.g., 2,2-diphenyl-1-picrylhydrazyl (DPPH)), Trolox equivalent antioxidant capacity (TEAC), and oxygen radical absorbance capacity (ORAC) assays. An inflamed Caco-2 cell model revealed nitric oxide (NO) inhibitory activity for Glu-amino acid MRPs, which contrasted the NO stimulatory activity obtained with Fru-amino acid MRPs, especially when glycine was used as the amino acid. Pre-treating Caco-2 cells with Fru-glycine MRPs protected against loss in trans-epithelial resistance (TEER) (p < 0.05) and reduced (p < 0.05) disruption of Caco-2 intestinal epithelial tight-junction (TJ) protein cells when exposed to 7.5% ethanol. A low molecular weight Fru-glycine (e.g., <1 kDa) fraction contributed to the protective effect, not observed with the corresponding high molecular weight MRP fraction. The presence of Alphacel had minimal effect on generating MRPs with relative modified protection against intestinal dysfunction in cultured Caco-2 cells. Rather, different types of sugar–amino acid combinations used to generate MRPs contributed more to mitigate injury in stress-induced Caco-2 cells. With the growing evidence that MRPs have a wide range of bioactive activities, this study concludes that specificity of substrate precursors that produce MRPs in heated foods is a critical factor for antioxidant and related cellular functions that represent a healthy gut.

2015 ◽  
Vol 3 (1) ◽  
pp. 20-25 ◽  
Author(s):  
Cleanthes Israilides ◽  
Varzakas Theodoros

Acrylamide, a toxic compound and possible carcinogen is formed in high heated starchy foods like potatoes through the process of the Maillard reaction in which reducing sugars and the amino acid asparagine play a major role. Various strategies which are described in this paper have been employed to reduce the formation of acrylamide in potato chips. Among these tuber genetics, harvesting time, storage conditions frying temperatures and time, soaking and use of various additives seem to be effective tools for the industry as well as for consumer food preparation. The results of various studies will help the industry to adopt practical effective and innovative ways to reduce the levels of acrylamide even further and calm the markets from demanding to provide warning labels and the manufactures to pay penalties and higher costs


1998 ◽  
Vol 61 (4) ◽  
pp. 521-524 ◽  
Author(s):  
Jennifer M Ames ◽  
Aklile B Defaye ◽  
Richard G Bailey ◽  
Lisa Bates

PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e5337 ◽  
Author(s):  
Chanikan Sonklin ◽  
Natta Laohakunjit ◽  
Orapin Kerdchoechuen

Background Bioactive peptides can prevent damage associated with oxidative stress in humans when consumed regularly. Recently, peptides have attracted immense interest because of their beneficial functional properties, safety and little or no side effects when used at high concentration. Most antioxidant peptides are small in size, less than 1 kDa, and contains a high proportion of hydrophobic amino acid. Particularly, tyrosine, leucine, alanine, isoleucine, valine, lysine, phenyalanine, cysteine, methionine and histidine in peptide chain exhibited high antioxidant activity. Mungbean meal protein (MMP) is highly abundant in hydrophobic amino acids. It indicated that MMP might be a good source of antioxidants. Therefore, the objectives were to optimize the conditions used to generate mungbean meal protein hydrolysate (MMPH) with antioxidant activity from bromelain and to investigate the antioxidant activities of different molecular weight (MW) peptide fraction. Methods Response Surface Methodology (RSM) was used for screening of the optimal conditions to produce MMPH. After that MMPH was fractionated using ultrafiltration membranes with different MW distributions. Crude-MMPH and four fractions were investigated for five antioxidant activities: 2,2,1-diphenyl-1-picrylhydrazyl (DPPH), hydroxyl, superoxide, ferric reducing antioxidant power (FRAP) and metal ion chelation activity. Results The optimal condition to produce the MMPH was 15% (w/w) of bromelain and hydrolysis time for 12 h which showed the greatest DPPH and ABTS radical scavenging activity. After mungbean protein from optimal condition was separated based on different molecular weight, the DPPH radical scavenging activity was the highest for the F4 (less than 1 kDa) peptide fraction. Metal ion chelating activity was generally weak, except for the F4 that had a value of 43.94% at a protein concentration of 5 mg/mL. The F4 also exhibited high hydroxyl and superoxide activities (54 and 65.1%), but moderate activity for ferric reducing antioxidant power (0.102 mmole Fe2+/g protein) compared to other peptide fractions and crude-MMPH. Molecular weight and amino acid were the main factors that determined the antioxidant activities of these peptide fractions. Results indicated that F4 had strong antioxidant potentials. Discussion The lowest MW fraction (less than 1 kDa) contributed to the highest DPPH, superoxide, hydroxyl and metal chelation activity because influence of low MW and high content of hydrophobic amino acid in peptide chain. Results from this study indicated that MMPH peptides donate protons to free radicals because they had significantly high DPPH value compared to superoxide, hydroxyl and FRAP, which reactions were electron donation. Moreover, MMPH peptides had the ability to inhibit transition metal ions because of highly abundant glutamic acid and aspartic acid in peptide chain.


Foods ◽  
2019 ◽  
Vol 8 (7) ◽  
pp. 242 ◽  
Author(s):  
Kun Chen ◽  
Jiajia Zhao ◽  
Xiaohan Shi ◽  
Qayum Abdul ◽  
Zhanmei Jiang

The characterization and antioxidant activity on Maillard reaction products (MRPs) derived from xylose and bovine casein hydrolysate (BCH) was investigated at 100 °C and initial pH 8.0 as a function of reaction time. The pH values and free amino groups contents of xylose–BCH MRPs remarkably decreased with the reaction time up to 8 h, whereas their browning intensities significantly increased (p < 0.05). After 4 h of heat treatment, the fluorescence properties of xylose–BCH MRPs reached the maximum. There was a production of higher and smaller molecular substances in xylose–BCH MRPs with an increased reaction time, as analyzed by size exclusion chromatography. The 2,2-diphenyl-1-picryl-hydrazyl (DPPH) free radical scavenging capacity and ferrous reducing activity of xylose-BCH MRPs gradually increased with the reaction time extended from 0 to 8 h.


2017 ◽  
Vol 12 (1) ◽  
Author(s):  
Maura N. Laus ◽  
Mariagrazia P. Cataldi ◽  
Carlo Robbe ◽  
Tiziana D'Ambrosio ◽  
Maria L. Amodio ◽  
...  

Antioxidant capacity (AC) of quinoa (<em>Chenopodium quinoa</em> Willd. cv. Real) seeds and sprouts obtained after 4 days of seed germination at 20°C and 70% humidity was evaluated using trolox equivalent antioxidant capacity (TEAC) and oxygen radical absorbance capacity (ORAC) assays, able to highlight reducing activity and peroxyl radical scavenging capacity, respectively; phenolic content (PC) was also measured. Both TEAC and ORAC assays revealed a significantly higher (about 2- and 2.8-fold, respectively) AC of 4-day-old sprouts compared to seeds; consistently, also PC values of sprouts resulted about 2.6 times higher than seeds. In order to investigate the influence of storage on AC and PC, as well as on vitamin C content (VCC), 4-day-old sprouts were subjected for 7 days at 5°C to three different conditions of controlled atmosphere storage (CAS) compared with air. Interestingly, whatever the CAS conditions, storage of quinoa sprouts up to 7 days induced an increase of AC evaluated in terms of reducing activity by TEAC assay. Consistently, an increase of PC and VCC was measured during storage, positively correlated to TEAC values. Moreover, a decrease of peroxyl radical scavenging activity, measured by ORAC, was observed after 7 days of storage, in accordance with a shift of AC towards the reducing activity component. Overall, these findings indicate that sprouting approach using quinoa may provide highly antioxidant-enriched seedlings that may improve nutritional quality of diet or of functional foods. Interestingly, antioxidant properties of quinoa sprouts may be deeply influenced by storage, able to increase reducing activity by increasing phenols and vitamin C.


Foods ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 623 ◽  
Author(s):  
Michael Zorzi ◽  
Francesco Gai ◽  
Claudio Medana ◽  
Riccardo Aigotti ◽  
Sara Morello ◽  
...  

The popularity of small berries has rapidly increased in Western countries given their antioxidant, anti-inflammatory, and antimicrobial activities and health-promoting properties. The aim of this study was to compare the fatty acid (FA) profile, phenolic compounds, and antioxidant capacity of extracts of 11 berries cultivated in the North West of Italy. Berry samples were extracted and evaluated for FA profile and total anthocyanin (TAC), total flavonoid contents (TFC), ferric-reducing antioxidant power (FRAP), and for their radical scavenging activities against 2,2′-diphenyl-1-picrylhydrazyl (DPPH•) radical. The main polyphenols of berry extracts were characterized by HPLC-DAD-UV-ESI HRMS in positive ion mode. Results showed that the highest TAC and TFC contents were recorded in black currants, blackberries, and blueberries. Maximum and minimum DPPH• radical scavenging activities, Trolox Equivalent Antioxidant Capacity, and FRAP measurements confirmed the same trend recorded for TAC and TFC values. HPLC-HRMS analyses highlight how blueberries and blackberries have the highest concentration in polyphenols. Palmitic, stearic, oleic, linoleic, α-linolenic, and γ-linolenic acids significantly differ between berries, with oleic and α-linolenic acid representing the most abundant FAs in raspberries. Among the berries investigated, results of phytochemical characterization suggest choosing black currants and blueberries as an excellent source of natural antioxidants for food and health purposes.


2007 ◽  
Vol 2007 ◽  
pp. 84-84
Author(s):  
M. J. Hutchinson ◽  
M. E. E. McCann ◽  
V Beattie

The addition of ‘high quality’ complementary feedingstuffs to the diet of the post weaning pig can positively impact on growth and lean muscle deposition. The Maillard Reaction bonds amino acid and sugar molecules together, and is one of the major pathways in the chemical changes that occur in the cooking process. Cooking of feedingstuffs has been shown to improve the digestibility and nutritive value of a diet (Pickford et al, 1992). In this study, lysine (Lys), methionine (Met) and threonine (Thr) where chemically reacted with sugar molecules to give in vitro early Maillard Reaction Products (MRP). The aim of this study was to assess what effect the addition of a solution of these MRPs to a complementary feedingstuff (Matan XL) would have on overall diet digestibility and subsequent piglet performance.


Sign in / Sign up

Export Citation Format

Share Document