scholarly journals A Novel Role of Pipecolic Acid Biosynthetic Pathway in Drought Tolerance through the Antioxidant System in Tomato

Antioxidants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1923
Author(s):  
Ping Wang ◽  
Qian Luo ◽  
Weicheng Yang ◽  
Golam Jalal Ahammed ◽  
Shuting Ding ◽  
...  

With global warming and water shortage, drought stress is provoking an increasing impact on plant growth, development, and crop productivity worldwide. Pipecolic acid (Pip) is an emerging lysine catabolite in plants, acting as a critical element in disease resistance with a related signal pathway of phytohormone salicylic acid (SA). While SA plays a vital role in various abiotic stresses, the role of Pip in plant response to abiotic stresses, especially drought, remains largely unknown. To address this issue, Pip biosynthetic gene Slald1 mutants and hydroxylated modification gene Slfmo1 mutants were generated using CRISPR-Cas9 gene-editing approaches. Drought resistance dramatically increased in Slald1 mutants compared with wild-type, which was associated with increased CO2 assimilation, photosystems activities, antioxidant enzymes activities, ascorbate and glutathione content, and reduced reactive oxygen species accumulation, lipid peroxidation and protein oxidation. On the contrary, Slfmo1 mutants were more sensitive to drought, showing damaged photosystems and impaired antioxidant systems, which were significantly alleviated by exogenous ascorbate. Our results demonstrate that Pip biosynthesis and hydroxylated modification pathways play a critical role in drought tolerance through the antioxidant system in tomato. This knowledge can be helpful to breed improved crop cultivars that are better equipped with drought resistance.

Cells ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 261
Author(s):  
Md. Mahadi Hasan ◽  
Milan Skalicky ◽  
Mohammad Shah Jahan ◽  
Md. Nazmul Hossain ◽  
Zunaira Anwar ◽  
...  

In recent years, research on spermine (Spm) has turned up a lot of new information about this essential polyamine, especially as it is able to counteract damage from abiotic stresses. Spm has been shown to protect plants from a variety of environmental insults, but whether it can prevent the adverse effects of drought has not yet been reported. Drought stress increases endogenous Spm in plants and exogenous application of Spm improves the plants’ ability to tolerate drought stress. Spm’s role in enhancing antioxidant defense mechanisms, glyoxalase systems, methylglyoxal (MG) detoxification, and creating tolerance for drought-induced oxidative stress is well documented in plants. However, the influences of enzyme activity and osmoregulation on Spm biosynthesis and metabolism are variable. Spm interacts with other molecules like nitric oxide (NO) and phytohormones such as abscisic acid, salicylic acid, brassinosteroids, and ethylene, to coordinate the reactions necessary for developing drought tolerance. This review focuses on the role of Spm in plants under severe drought stress. We have proposed models to explain how Spm interacts with existing defense mechanisms in plants to improve drought tolerance.


2021 ◽  
Vol 12 ◽  
Author(s):  
Mohammad Aqa Mohammadi ◽  
Yan Cheng ◽  
Mohammad Aslam ◽  
Bello Hassan Jakada ◽  
Myat Hnin Wai ◽  
...  

Phosphite (Phi) is a chemical analog of orthophosphate [HPO43−]. It is a systemic pesticide generally known to control the prevalence of oomycetes and soil-borne diseases such as Phytophthora, Pythium, and Plasmopora species. Phi can also control disease symptoms and the spread of pathogenic bacteria, fungi, and nematodes. Phi plays critical roles as a fungicide, pesticide, fertilizer, or biostimulator. Overall, Phi can alleviate the severity of the disease caused by oomycete, fungi, pathogenic bacteria, and nematodes (leave, stem, fruit, tuber, and root) in various plants (vegetables, fruits, crops, root/tuber crops, ornamental plants, and forests). Advance research in molecular, physiological, and biochemical approaches has approved the key role of Phi in enhancing crop growth, quantity, and quality of several plant species. Phi is chemically similar to orthophosphate, and inside the cells, it is likely to get involved in different features of phosphate metabolism in both plants and pathogens. In plants, a range of physiobiochemical alterations are induced by plant pathogen stress, which causes lowered photosynthesis activities, enzymatic activities, increased accumulation of reactive oxygen species (ROS), and modification in a large group of genes. To date, several attempts have been made to study plant-pathogen interactions with the intent to minimize the loss of crop productivity. Phi’s emerging function as a biostimulant in plants has boost plant yield and tolerance against various stress factors. This review discusses Phi-mediated biostimulant effects against biotic and abiotic stresses.


2014 ◽  
Vol 115 (suppl_1) ◽  
Author(s):  
Hsiang-Chun J Chang ◽  
Rongxue Wu ◽  
Hossein Ardehali

Introduction: Iron is essential for the activity of a large number of cellular proteins, but excess free iron can cause cellular damage through production of reactive oxygen species (ROS). Mitochondria are the major site of cellular iron homeostasis, and we recently showed the mitochondrial iron export is mediated by ATP-binding cassette protein-B8 (ABCB8). The role of mitochondrial iron in ischemia-reperfusion (I/R) injury in the heart has not been examined. We hypothesize that mitochondrial iron has a critical role in I/R damage and a reduction of mitochondrial iron is protective against I/R injury through a reduction in ROS. Results: Cardiomyocyte-specific ABCB8 transgenic (TG) mice had significantly lower mitochondrial iron in the heart than nontransgenic (NTG) littermates at baseline, but their cardiac function and the expression of key antioxidant systems were indistinguishable from NTG littermates. To study the role of mitochondrial iron in I/R injury, we subjected ABCB8 TG mice to I/R. TG mice displayed significantly less apoptosis compared to NTG littermates (11.76% vs. 17.63%, p<0.05, n=4-6) and had significantly reduced lipid peroxidation products 48 hours after I/R. To further confirm that our in vivo finding was due to reduced mitochondrial iron, we studied the effect of pharmacological reduction of mitochondrial iron in vitro. 2,2-bipyridyl (BPD) is a mitochondria-accessible iron chelator while deferoxamine (DFO) has poor penetrance into mitochondria. Treating rat cardiomyoblasts H9C2 with BPD but not DFO significantly reduced chelatable mitochondrial iron, as measured by staining cells with rhodamine B-[(1,10-phenanthrolin-5-yl)aminocarbonyl]benzyl ester. In addition, BPD but not DFO pretreatment protected cells against H2O2 induced cell death (p<0.05). BPD treatment in mice decreased baseline mitochondrial iron and significantly preserved cardiac function after I/R. Conclusions: Our findings demonstrate that selective reduction in mitochondrial iron is protective in I/R injury, and show that mitochondrial iron is a source of ROS and cellular damage in I/R. Thus, targeting mitochondrial iron with selective iron chelators, as studied in our system, may provide a novel approach for treatment of ischemic heart disease.


2020 ◽  
Vol 27 (12) ◽  
pp. 1940-1954 ◽  
Author(s):  
Yanfang Ouyang ◽  
Jing Li ◽  
Yi Peng ◽  
Zhijun Huang ◽  
Qiao Ren ◽  
...  

Antibiotics play an irreplaceable role in the prevention and treatment of bacterial infection diseases. However, because of the improper use of antibiotics, bacterial resistance emerges as a major challenge of public health all over the world. The small thiol molecules such as glutathione can directly react and conjugate with some antibiotics, which thus contribute to drug susceptibility and resistance. Recently, accumulating evidence shows that there is a close link between the antibacterial activities of some antibiotics and Reactive Oxygen Species (ROS). Thioredoxin and glutathione systems are two main cellular disulfide reductase systems maintaining cellular ROS level. Therefore, these two thioldependent antioxidant systems may affect the antibiotic susceptibility and resistance. Microorganisms are equipped with different thiol-dependent antioxidant systems, which make the role of thioldependent antioxidant systems in antibiotic susceptibility and resistance is different in various bacteria. Here we will focus on the review on the advances of the effects of thiol-dependent antioxidant system in the bacterial antibiotic susceptibility and resistance.


2014 ◽  
Vol 27 (2) ◽  
pp. 177-189 ◽  
Author(s):  
Mazen Alazem ◽  
Kuan-Yu Lin ◽  
Na-Sheng Lin

Accepted 29 October 2013. Abscisic acid (ABA) plays a key role in modulating plant responses to different biotic and abiotic stresses. However, the effect of ABA on virus infection is not fully understood. Here, we describe the effects of the ABA pathway on the accumulation of Bamboo mosaic virus (BaMV) and Cucumber mosaic virus (CMV) in two different hosts: Arabidopsis thaliana and Nicotiana benthamiana. We report that ABA2 plays a critical role in the accumulation of BaMV and CMV. Mutants downstream of ABA2 (aao3, abi1-1, abi3-1, and abi4-1) were susceptible to BaMV, indicating that the ABA pathway downstream of ABA2 is essential for BaMV resistance. The aba2-1 mutant decreased the accumulation of BaMV (+)RNA, (–)RNA, and coat protein, with the most dramatic effect being observed for (–)RNA. These findings were further validated by the use of virus-induced gene silencing and enzyme-linked immunosorbent assay in N. benthamiana. In addition, infecting N. benthamiana with BaMV or CMV increased ABA contents and activated the SA and ABA pathways, thereby disrupting the antagonism between these two cascades. Our findings uncover a novel role for ABA2 in supporting BaMV and CMV accumulation, distinct from the opposing role of its downstream genes.


2021 ◽  
Vol 12 ◽  
Author(s):  
Saima Aslam ◽  
Nadia Gul ◽  
Mudasir A. Mir ◽  
Mohd. Asgher ◽  
Nadiah Al-Sulami ◽  
...  

Plant growth regulators have an important role in various developmental processes during the life cycle of plants. They are involved in abiotic stress responses and tolerance. They have very well-developed capabilities to sense the changes in their external milieu and initiate an appropriate signaling cascade that leads to the activation of plant defense mechanisms. The plant defense system activation causes build-up of plant defense hormones like jasmonic acid (JA) and antioxidant systems like glutathione (GSH). Moreover, calcium (Ca2+) transients are also seen during abiotic stress conditions depicting the role of Ca2+ in alleviating abiotic stress as well. Therefore, these growth regulators tend to control plant growth under varying abiotic stresses by regulating its oxidative defense and detoxification system. This review highlights the role of Jasmonates, Calcium, and glutathione in abiotic stress tolerance and activation of possible novel interlinked signaling cascade between them. Further, phyto-hormone crosstalk with jasmonates, calcium and glutathione under abiotic stress conditions followed by brief insights on omics approaches is also elucidated.


2021 ◽  
Author(s):  
Feibing Wang ◽  
Haofei Niu ◽  
Dongqing Xin ◽  
Guokun Tang ◽  
Yang Li ◽  
...  

Abstract Drought and salt stresses, as major environmental abiotic stresses in agricultural worldwide, affect plant growth and crop productivity and quality. The development of crops with higher drought and salt tolerance is therefore highly desirable. Here, we reported the isolation and biological function and molecular characterization of a novel maspardin gene, OsMas, from rice cultivar Yangjing 805 (Oryza sativa L.). The expression levels of OsMas were up-regulated under mannitol, PEG6000, NaCl and ABA treatments in rice. Heterologous expression of OsMas enhanced salt and drought tolerance in Escherichia coli and Arabidopsis. Moreover, the OsMas gene was introduced into rice cultivar Zhonghua 11 (wild-type, WT) and the OsMas-overexpression (OsMas-OE) rice plants exhibited significantly enhanced salt and drought tolerance, while the OsMas-interference (OsMas-RNAi) rice plants exhibited decreased tolerance to salt and drought stresses, compared with WT plants. The OsMas-OE plants exhibited enhanced hypersensitive, while the OsMas-RNAi plants showed less sensitive to exogenous ABA treatment at both germination and post-germination stages. The content of ABA, proline and K+ and the activities of superoxide dismutase (SOD), catalase (CAT), peroxidase (POD) and photosynthesis were significantly increased, while the content of malonaldehyde (MDA), hydrogen peroxide (H2O2), superoxide anion radical (O2-) and Na+ were significantly decreased in OsMas-OE plants compared with OsMas-RNAi and WT plants. Overexpression of OsMas up-regulated the genes involved in ABA biosynthesis and signaling pathways, proline biosynthesis pathway, ROS-scavenging system, photosynthesis and ion transport pathways under salt and drought stresses. Collectively, our results indicate that the OsMas gene functions in improving salt and drought tolerance in rice, which may serve as a candidate gene for use in enhancing the resistance to abiotic stresses in crops.


2016 ◽  
Vol 31 (28n29) ◽  
pp. 1645020
Author(s):  
Uri Maor ◽  

Gribov’s partonic Pomeron provides the foundations of updated models which incorporate soft and hard scattering, so as to reproduce the recent LHC p-p cross sections. Explicitly, total, elastic, inelastic and diffrative data. Leading models are: GLM (Gotsman, Levin, Maor), KMR (Khoze, Martin, Ryskin), Kaidalov-Poghosyan and Ostapchenco. None of these models in their pre-LHC versions reproduced the TOTEM, ALICE, ATLAS and CMS soft LHC data, needing considerable reconstructions, either in the fitting procedures (GLM), or in the details of the theoretical models. In the following, I shall relate mostly to the GLM model, emphasizing the critical role of the diffractive channels.


Agriculture ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 396
Author(s):  
Muhammad Umair Hassan ◽  
Muhammad Aamer ◽  
Muhammad Umer Chattha ◽  
Tang Haiying ◽  
Babar Shahzad ◽  
...  

Drought stress affects plant growth and development by altering physiological and biochemical processes resulting in reduced crop productivity. Zinc (Zn) is an essential micronutrient that plays fundamental roles in crop resistance against the drought stress by regulating various physiological and molecular mechanisms. Under drought stress, Zn application improves seed germination, plant water relations, cell membrane stability, osmolyte accumulation, stomatal regulation, water use efficiency and photosynthesis, thus resulting in significantly better plant performance. Moreover, Zn interacts with plant hormones, increases the expression of stress proteins and stimulates the antioxidant enzymes for counteracting drought effects. To better appraise the potential benefits arising from optimum Zn nutrition, in the present review we discuss the role of Zn in plants under drought stress. Our aim is to provide a complete, updated picture in order to orientate future research directions on this topic.


Sign in / Sign up

Export Citation Format

Share Document