scholarly journals Cytoprotective Effects of Natural Compounds against Oxidative Stress

Antioxidants ◽  
2018 ◽  
Vol 7 (10) ◽  
pp. 147 ◽  
Author(s):  
Jay Mehta ◽  
Srujana Rayalam ◽  
Xinyu Wang

Oxidative stress, an imbalance between reactive oxygen species and antioxidants, has been witnessed in pathophysiological states of many disorders. Compounds identified from natural sources have long been recognized to ameliorate oxidative stress due to their inherent antioxidant activities. Here, we summarize the cytoprotective effects and mechanisms of natural or naturally derived synthetic compounds against oxidative stress. These compounds include: caffeic acid phenethyl ester (CAPE) found in honey bee propolis, curcumin from turmeric roots, resveratrol abundant in grape, and 1-[2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oyl] imidazole (CDDO-Im), a synthetic triterpenoid based on naturally occurring oleanolic acid. Cytoprotective effects of these compounds in diseases conditions like cardiovascular diseases and obesity to decrease oxidative stress are discussed.

2021 ◽  
Author(s):  
Małgorzata Olszowy-Tomczyk

AbstractOxidative stress, associated with an imbalance between the oxidants (reactive oxygen species) and the antioxidants in the body, contributes to the development of many diseases. The body’s fight against reactive oxygen species is supported by antioxidants. Nowadays, there are too many analytical methods, but there is no one universal technique for assessing antioxidant properties. Moreover, the applied different ways of expressing the results lead to their incompatibility and unreasonable interpretation. The paper is a literature review concerning the most frequent ways of antioxidant activities expression and for an easy and universal method of the obtained results discussion. This paper is an attempt to point out their disadvantages and advantages. The manuscript can support the searching interpretation of the obtained results which will be a good tool for the development of a number of fields, especially medicine what can help in the future detection and treatment of many serious diseases. Graphic abstract


Author(s):  
Sidra Munir

When the antioxidants in our immune system cannot neutralize or convert Reactive oxygen species into safe molecules at the rate at which it is produced then this imbalance is termed as “oxidative stress”. It is related with a wide array of diseases that includes cancer, diabetes, cardiovascular diseases, hypertension etc. These ROS species however are utmost essential for the proper functioning of human body which are produced as a consequence of partial oxidation of cellular metabolism performing essential functions such as protein phosphorylation, activation of several transcriptional factors, apoptosis, immunity, and differentiation. The sources by which these are produced can be broadly classified are intrinsic and extrinsic sources. There are variety of natural antioxidant enzymes of human body that combat against this oxidative stress. The extrinsic sources of ROS include the use of natural plants, extracted flavonoids and vitamins. In this review we will briefly explain how the sources of ROS, its essential function in human body, its elevation and associated damage to organs and effect on various diseases, and a hope of finding a way of how this oxidative stress can be exploited for therapeutic potential.


2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Maria Rosa Antognazza ◽  
Ilaria Abdel Aziz ◽  
Francesco Lodola

Reactive Oxygen Species (ROS) play an essential dual role in living systems. Healthy levels of ROS modulate several signaling pathways, but at the same time, when they exceed normal physiological amounts, they work in the opposite direction, playing pivotal functions in the pathophysiology of multiple severe medical conditions (i.e., cancer, diabetes, neurodegenerative and cardiovascular diseases, and aging). Therefore, the research for methods to detect their levels via light-sensitive fluorescent probes has been extensively studied over the years. However, this is not the only link between light and ROS. In fact, the modulation of ROS mediated by light has been exploited already for a long time. In this review, we report the state of the art, as well as recent developments, in the field of photostimulation of oxidative stress, from photobiomodulation (PBM) mediated by naturally expressed light-sensitive proteins to the most recent optogenetic approaches, and finally, we describe the main methods of exogenous stimulation, in particular highlighting the new insights based on optically driven ROS modulation mediated by polymeric materials.


Molecules ◽  
2020 ◽  
Vol 25 (6) ◽  
pp. 1264 ◽  
Author(s):  
Huifang Zhang ◽  
Rui Liu ◽  
Qun Lu

Phenolamines and flavonoids are two important components in bee pollen. There are many reports on the bioactivity of flavonoids in bee pollen, but few on phenolamines. This study aims to separate and characterize the flavonoids and phenolamines from rape bee pollen, and compare their antioxidant activities and protective effects against oxidative stress. The rape bee pollen was separated to obtain 35% and 50% fractions, which were characterized by HPLC-ESI-QTOF-MS/MS. The results showed that the compounds in 35% fraction were quercetin and kaempferol glycosides, while the compounds in 50% fraction were phenolamines, including di-p-coumaroyl spermidine, p-coumaroyl caffeoyl hydroxyferuloyl spermine, di-p-coumaroyl hydroxyferuloyl spermine, and tri-p-coumaroyl spermidine. The antioxidant activities of phenolamines and flavonoids were evaluated by 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2’-azino-bis-3-ethylbenzothiazoline-6-sulphonic acid (ABTS), and ferric reducing antioxidant power (FRAP) assays. It was found that the antioxidant activity of phenolamines was significantly higher than that of flavonoids. Moreover, phenolamines showed better protective effects than flavonoids on HepG2 cells injured by AAPH. Furthermore, phenolamines could significantly reduce the reactive oxygen species (ROS), alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels, and increase the superoxide dismutase (SOD) and glutathione (GSH) levels. This study lays a foundation for the further understanding of phenolamines in rape bee pollen.


2020 ◽  
pp. S541-S553
Author(s):  
I DOVINOVA ◽  
M KVANDOVA ◽  
P BALIS ◽  
L GRESOVA ◽  
M MAJZUNOVA ◽  
...  

Reactive oxygen species are an important element of redox regulation in cells and tissues. During physiological processes, molecules undergo chemical changes caused by reduction and oxidation reactions. Free radicals are involved in interactions with other molecules, leading to oxidative stress. Oxidative stress works two ways depending on the levels of oxidizing agents and products. Excessive action of oxidizing agents damages biomolecules, while a moderate physiological level of oxidative stress (oxidative eustress) is necessary to control life processes through redox signaling required for normal cellular operation. High levels of reactive oxygen species (ROS) mediate pathological changes. Oxidative stress helps to regulate cellular phenotypes in physiological and pathological conditions. Nrf2 (nuclear factor erythroid 2-related factor 2, NFE2L2) transcription factor functions as a target nuclear receptor against oxidative stress and is a key factor in redox regulation in hypertension and cardiovascular disease. Nrf2 mediates transcriptional regulation of a variety of target genes. The Keap1-Nrf2-ARE system regulates many detoxification and antioxidant enzymes in cells after the exposure to reactive oxygen species and electrophiles. Activation of Nrf2/ARE signaling is differentially regulated during acute and chronic stress. Keap1 normally maintains Nrf2 in the cytosol and stimulates its degradation through ubiquitination. During acute oxidative stress, oxidized molecules modify the interaction of Nrf2 and Keap1, when Nrf2 is released from the cytoplasm into the nucleus where it binds to the antioxidant response element (ARE). This triggers the expression of antioxidant and detoxification genes. The consequence of long-term chronic oxidative stress is activation of glycogen synthase kinase 3β (GSK-3β) inhibiting Nrf2 activity and function. PPARγ (peroxisome proliferator-activated receptor gamma) is a nuclear receptor playing an important role in the management of cardiovascular diseases, hypertension and metabolic syndrome. PPARγ targeting of genes with peroxisome proliferator response element (PPRE) has led to the identification of several genes involved in lipid metabolism or oxidative stress. PPARγ stimulation is triggered by endogenous and exogenous ligands – agonists and it is involved in the activation of several cellular signaling pathways involved in oxidative stress response, such as the PI3K/Akt/NOS pathway. Nrf2 and PPARγ are linked together with their several activators and Nrf2/ARE and PPARγ/PPRE pathways can control several types of diseases.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Xing Chang ◽  
Tian Zhang ◽  
Qingyan Meng ◽  
ShiyuanWang ◽  
Peizheng Yan ◽  
...  

Cardiomyocyte apoptosis is an important pathological mechanism underlying cardiovascular diseases and is commonly caused by hypoxia. Moreover, hypoxic injury occurs not only in common cardiovascular diseases but also following various treatments of heart-related conditions. One of the major mechanisms underlying hypoxic injury is oxidative stress. Quercetin has been shown to exert antioxidant stress and vascular protective effects, making it a promising candidate for treating cardiovascular diseases. Therefore, we examined the protective effect of quercetin on human cardiomyocytes subjected to hypoxia-induced oxidative stress damage and its underlying mechanism. Human cardiomyocytes were subjected to hypoxia/reoxygenation (H/R) in vitro with or without quercetin pretreatment; thereafter, flow cytometry, Cell Counting Kit-8 assay, laser scanning confocal microscopy, quantitative PCR, western blotting, and enzyme-linked immunosorbent assay were performed to analyze the effects of quercetin on cardiomyocytes. We found that H/R induced reactive oxygen species overproduction and endoplasmic reticulum stress, as well as inhibited the function of the mitochondria/endoplasmic reticulum and mitophagy, eventually leading to apoptosis and decreasing the viability of human cardiomyocytes. Quercetin pretreatment inhibited H/R-mediated overproduction of reactive oxygen species and damage caused by oxidative stress, increased mitophagy, regulated mRNA and protein expression of transmembrane BAX inhibitor-1 motif-containing 6 (TMBIM6), regulated endoplasmic reticulum stress, and improved the vulnerability of human cardiomyocytes to H/R. Furthermore, transfection with short interfering RNA against silent information regulator protein 1 (SIRT1) counteracted the protective effects of quercetin on cardiomyocytes. Thus, quercetin was predicted to regulate mitophagy and endoplasmic reticulum stress through SIRT1/TMBIM6 and inhibit H/R-induced oxidative stress damage. These findings may be useful for developing treatments for hypoxic injury-induced cardiovascular diseases and further highlight the potential of quercetin for regulating mitochondrial quality control and endoplasmic reticulum function.


2019 ◽  
Vol 24 (40) ◽  
pp. 4705-4710 ◽  
Author(s):  
Kevin G. Cabezas ◽  
Carmen R. Gómez-Fernandez ◽  
Roberto Vazquez-Padron

Background: Cardiovascular diseases account for the highest mortality rate in the United States. The major underlying mechanism driving the onset and maintenance of cardiovascular diseases is atherosclerosis. Atherosclerosis is a chronic disease affecting large and medium-size arteries; it proceeds through four main stages along different decades of life, beginning at birth. Atherosclerosis is a consequence of oxidative stress, where homeostasis between endogenous antioxidants and reactive oxygen species is disrupted. Failure of intrinsic antioxidants and prophylactic antioxidant supplements to prevent atherosclerosis formation is an ongoing area of research in the race to avert, manage and cure atherosclerosis. Methods: The purpose of this work was to elucidate the actions of reactive oxygen species and oxidative stress on the formation of atherosclerosis as well as the different stages of atherosclerosis and the different mechanisms to prevent it. Through an extensive review of scientific literature, this paper correlates cell damage caused by oxidative stress to atheromatous plaque formation, as well as an in-depth analysis of high-density lipoproteins and enzymatic and non-enzymatic antioxidant role on atherosclerosis prevention. The antioxidant mechanism is overwhelmed by atherosclerotic processes and fails to be the ideal treatment of atherosclerosis. There is no scientific data that correlates prophylactic and non-prophylactic antioxidant treatment to a decrease in mortality or comorbidities pertaining to atherosclerosis. This is thought to be due to lack of consensus of optimal therapeutic doses, lack of reliable markers indicating which patient is to benefit from therapy and the chemical complexity of antioxidants in vivo. Current treatments for atherosclerosis include HMG-CoA reductase inhibitors which directly target low-density lipoproteins to tackle atherosclerotic plaque formation. Conclusion: HMG-CoA reductase inhibitors are not enough for the treatment of atherosclerosis given the complexity of the disease which has immune, musculoskeletal, genetic and hematologic aspects besides the involvement of lipids and lipoproteins. Therefore, other pharmacologic targets such as the PCSK9 enzyme and NFK- β should be researched in depth as possible treatments for atherosclerosis.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Hyunyun Kim ◽  
Jisoo Yun ◽  
Sang-Mo Kwon

Accumulating evidence indicates that acute and chronic uncontrolled overproduction of oxidative stress-related factors including reactive oxygen species (ROS) causes cardiovascular diseases (CVDs), atherosclerosis, and diabetes. Moreover ROS mediate various signaling pathways underlying vascular inflammation in ischemic tissues. With respect to stem cell-based therapy, several studies clearly indicate that modulating antioxidant production at cellular levels enhances stem/progenitor cell functionalities, including proliferation, long-term survival in ischemic tissues, and complete differentiation of transplanted cells into mature vascular cells. Recently emerging therapeutic strategies involving adult stem cells, including endothelial progenitor cells (EPCs), for treating ischemic CVDs have highlighted the need to control intracellular ROS production, because it critically affects the replicative senescence ofex vivoexpanded therapeutic cells. Better understanding of the complexity of cellular ROS in stem cell biology might improve cell survival in ischemic tissues and enhance the regenerative potentials of transplanted stem/progenitor cells. In this review, we will discuss the nature and sources of ROS, drug-based therapeutic strategies for scavenging ROS, and EPC based therapeutic strategies for treating oxidative stress-related CVDs. Furthermore, we will discuss whether primed EPCs pretreated with natural ROS-scavenging compounds are crucial and promising therapeutic strategies for vascular repair.


Author(s):  
Gabriel T. do Vale ◽  
Carlos R. Tirapelli

Reactive oxygen species (ROS) are reactive derivatives of oxygen metabolism. The ROS generation can be mediated by distinctive enzymatic systems including NADPH oxidases. The components of this enzyme are expressed in endothelial and vascular smooth muscle cells, adventitial fibroblasts, and infiltrating monocytes/macrophages. Oxidative stress is a molecular dysregulation in ROS generation/elimination, which plays a key role in the development of vascular dysfunction in distinctive conditions including hypertension. It is characterized by vascular inflammation, a loss of NO bioavailability and endothelial dysfunction. Considering that oxidative stress is a key mediator of vascular dysfunction, antioxidant therapy with classic antioxidants seemed to be a promising alternative for the treatment of vascular diseases. In this sense, some commonly used drugs for the treatment of cardiovascular diseases such as angiotensin converting enzyme (ACE) inhibitors or angiotensin receptor AT1 antagonists showed antioxidant effects that might have contributed, at least in part, to the beneficial effects of these drugs on the treatment of cardiovascular diseases. The effectiveness of these drugs shows that ROS are in fact important mediators of vascular dysfunction and that angiotensin II plays a critical role in such response.


Sign in / Sign up

Export Citation Format

Share Document