scholarly journals Optimization of Ultrasound-Assisted Extraction of Polyphenols from Myrtus communis L. Pericarp

Antioxidants ◽  
2019 ◽  
Vol 8 (7) ◽  
pp. 205 ◽  
Author(s):  
Nadia Bouaoudia-Madi ◽  
Lila Boulekbache-Makhlouf ◽  
Khodir Madani ◽  
Artur M.S. Silva ◽  
Sofiane Dairi ◽  
...  

Response surface methodology (RSM) was used to optimize the extraction of phenolics from pericap of Myrtus communis using ultrasound-assisted extraction (UAE). The results were compared with those obtained by microwave-assisted extraction (MAE) and conventional solvent extraction (CSE) methods. The individual compounds of the optimized extract obtained by UAE were identified by ultra-high-performance liquid chromatography coupled with diode array detection and electrospray ionization mass spectrometry (UHPLC-DAD-ESI-MSn). The yield of total phenolic compounds (TPC) was affected more significantly by ethanol concentration, irradiation time, liquid solvent-to-solid ratio (p < 0.0001) and amplitude (p = 0.0421) and optimal parameters conditions set by the RSM model were 70% (v/v), 7.5 min and 30%, respectively. The experimental yield of TPC (241.66 ± 12.77 mg gallic acid equivalent/g dry weight) confirmed the predicted value (235.52 ± 9.9 mg gallic acid equivalent/g dry weight), allowing also to confirm the model validity. Under optimized conditions, UAE was more efficient than MAE and CSE in extracting antioxidants, which comprised mostly myricetin glycosides. Globally, the present work demonstrated that, compared to MAE and CSE, UAE is an efficient method for phenolic extraction from M. communis pericarp, enabling to reduce the working time and the solvent consumption.

2021 ◽  
Vol 43 ◽  
pp. e55564
Author(s):  
Suelen Siqueira dos Santos ◽  
Carolina Moser Paraíso ◽  
Letícia Misturini Rodrigues ◽  
Grasiele Scaramal Madrona

Blueberry and raspberry pomace are a rich source of bioactive compounds that have not been commercially utilized yet, and ultrasound-assisted technology can efficiently extract these compounds. Also, the use of water as a solvent added to the ultrasound-assisted technology improves this eco-friendly process. Therefore, an aqueous eco-friendly extraction, including extraction time and ultrasound presence or absence (conventional extraction) was performed in order to extract bioactive compounds from blueberry and raspberry pomace. Response parameters included levels of anthocyanins, phenolic compounds, and flavonoids, and antioxidant activity determined by DPPH, ABTS, and FRAP methods. Analysis of variance results indicated that ultrasound-assisted extraction for 45 min. was feasible to extract the bioactive compounds. The antioxidant content of the extract obtained by the ultrasound-assisted process was 1.4 times higher on average and the total phenolic concentration was 1.6 times higher (for blueberry 5.02 and for raspberry 2.53 mg gallic acid equivalent/g) compared with those obtained by the conventional process. Thus, the ultrasound-assisted extraction method can be a profitable alternative to extract bioactive compounds from blueberry and raspberry pomace, as it is energy efficient, requires fewer chemicals, and produces less effluent. This eco-friendly technology is therefore viable for food, nutraceutical, and cosmetic industries, and also for reducing food waste.


Proceedings ◽  
2020 ◽  
Vol 70 (1) ◽  
pp. 49
Author(s):  
María del Carmen Razola-Díaz ◽  
Eduardo Jesús Guerra-Hernández ◽  
Celia Rodríguez-Pérez ◽  
Ana María Gómez-Caravaca ◽  
Belén García-Villanova ◽  
...  

Orange peel (OP) is the main by-product from orange juice industry. OP is a known source of bioactive compounds and is widely studied for its antioxidant, anti-inflammatory, anti-cancer, anti-rheumatic, anti-diabetic and cardioprotective activities. Thus, this research focuses on the establishments of ultrasound-assisted extraction of phenolic compounds in orange peel using a sonotrode; objective framed in the European SHEALTHY (non-thermal physical technologies to preserve healthiness of fresh and minimally processed fruit and vegetables) project. For this purpose, a Box Behnken design of 27 experiments was carried out with 4 independent factors (ratio ethanol/water, time (min), amplitude (%) and pulse (%)). Quantitative analyses of total phenolic compounds (TPC) were performed by Folin-Ciocalteu method and the antioxidant activity was measured by ABTS and DPPH methods. The validity of the experimental design was confirmed by ANOVA and the optimal sonotrode extraction conditions were obtained by response surface methodology. The optimal extracts were characterized by HPLC coupled to mass spectrometer detectors. The highest phenolic content and antioxidant activity was obtained using 45/55 ethanol/water (v/v), 35 min, amplitude 90% (110 W) and pulse 100%. The established method allows the extraction of 30.42 mg of gallic acid equivalents/g dry weight of total phenolic compounds from OP; this value suppose an increment up to 60% higher than conventional extraction.


Processes ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1153
Author(s):  
Xi Chen ◽  
Xinyue Li ◽  
Xiangwei Zhu ◽  
Guozhen Wang ◽  
Kun Zhuang ◽  
...  

Jizi439, a newly developed black wheat breeding line, was reported to effectively regulate blood glucose, which may potentially be associated with its intrinsic high level of phenolic compounds (PCs). To maximize the PCs yield and thereby enhance their antioxidant activity, orthogonal experiments were designed in sequence for extrusion of Jizi439 black wheat bran (BWB) powder and followed by the extraction of PCs assisted with ultrasound technique. White wheat bran was used as a control. The optimum condition for extrusion was 110 °C, 25% feed water content, 140 rpm screw speed; meanwhile, 50 °C, 40 min, 35 kHz ultrasonic frequency, 300 W ultrasonic power for ultrasound-assisted extraction (UAE). Total phenolic content (TPC) as determined by Folin–Ciocalteu method was 2856.3 ± 57.7 μg gallic acid equivalents (GAE) per gram of dry weight (DW) of phenolic extract; meanwhile, antioxidant activity (AA) in terms of DPPH radical scavenging ratio was 85.5% ± 1.1% under optimized conditions, which were both significantly higher than the control. Phenolic acids except for gallic acid, as well as flavonoids, including luteolin and apigenin were increased by extrusion and ultrasound, as suggested by HPLC results. In conclusion, our study would provide a valuable reference for processing Jizi439 BWB before making or commercially utilize it into health-related food products.


Molecules ◽  
2019 ◽  
Vol 24 (19) ◽  
pp. 3541 ◽  
Author(s):  
Nelly Medina-Torres ◽  
Hugo Espinosa-Andrews ◽  
Stéphane Trombotto ◽  
Teresa Ayora-Talavera ◽  
Jesús Patrón-Vázquez ◽  
...  

Bioactive Phenols-loaded chitosan nanoparticles (PL-CNps) were developed by ionic gelation from Persian lemon (Citrus latifolia) waste (PLW) and chitosan nanoparticles. Response Surface Methodology (RSM) was used to determine the optimal Ultrasound-Assisted Extraction (UAE) conditions for the total phenolic compounds (TPC) recovery from PLW (58.13 mg GAE/g dw), evaluating the ethanol concentration, extraction time, amplitude, and solid/liquid ratio. Eight compounds expressed as mg/g dry weight (dw) were identified by ultra-performance liquid chromatography coupled photo diode array (UPLC-PDA) analysis: eriocitrin (20.71 ± 0.09), diosmin (18.59 ± 0.13), hesperidin (7.30 ± 0.04), sinapic acid (3.67 ± 0.04), catechin (2.92 ± 0.05), coumaric acid (2.86 ± 0.01), neohesperidin (1.63 ± 0.00), and naringenin (0.44 ± 0.00). The PL-CNps presented size of 232.7 nm, polydispersity index of 0.182, Z potential of −3.8 mV, and encapsulation efficiency of 81.16%. The results indicated that a synergic effect between phenolic compounds from PLW and chitosan nanoparticles was observed in antioxidant and antibacterial activity, according to Limpel’s equation. Such results indicate that PLW in such bioprocesses shows excellent potential as substrates for the production of value-added compounds with a special application for the food industry.


Foods ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 931
Author(s):  
Cristina Reche ◽  
Carmen Rosselló ◽  
Mónica M. Umaña ◽  
Valeria Eim ◽  
Susana Simal

Valorization of an artichoke by-product, rich in bioactive compounds, by ultrasound-assisted extraction, is proposed. The extraction yield curves of total phenolic content (TPC) and chlorogenic acid content (CAC) in 20% ethanol (v/v) with agitation (100 rpm) and ultrasound (200 and 335 W/L) were determined at 25, 40, and 60 °C. A mathematical model considering simultaneous diffusion and convection is proposed to simulate the extraction curves and to quantify both temperature and ultrasound power density effects in terms of the model parameters variation. The effective diffusion coefficient exhibited temperature dependence (72% increase for TPC from 25 °C to 60 °C), whereas the external mass transfer coefficient and the equilibrium extraction yield depended on both temperature (72% and 90% increases for TPC from 25 to 60 °C) and ultrasound power density (26 and 51% increases for TPC from 0 (agitation) to 335 W/L). The model allowed the accurate curves simulation, the average mean relative error being 5.3 ± 2.6%. Thus, the need of considering two resistances in series to satisfactorily simulate the extraction yield curves could be related to the diffusion of the bioactive compound from inside the vegetable cells toward the intercellular volume and from there, to the liquid phase.


2020 ◽  
Vol 16 (1-2) ◽  
Author(s):  
Cassiano Brown da Rocha ◽  
Caciano Pelayo Zapata Noreña

AbstractThe grape pomace is a by-product from the industrial processing of grape juice, which can be used as a source of bioactive compounds. The aim of this study was to separate the phenolic compounds from grape pomace using an acidic aqueous solution with 2 % citric acid as a solvent, using both ultrasound-assisted extraction, with powers of 250, 350 and 450 W and times of 5, 10 and 15 min, and microwave-assisted extraction using powers of 600, 800 and 1,000 W and times of 5, 7 and 10 min. The results showed that for both methods of extraction, the contents of total phenolic compounds and antioxidant activity by ABTS and DPPH increased with time, and microwave at 1,000 W for 10 min corresponded to the best extraction condition. However, the contents of phenolic compounds and antioxidant activity were lower than exhaustive extraction using acidified methanol solution.


Agronomy ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 326 ◽  
Author(s):  
María José Aliaño-González ◽  
Estrella Espada-Bellido ◽  
Marta Ferreiro-González ◽  
Ceferino Carrera ◽  
Miguel Palma ◽  
...  

Two optimized methods for ultrasound-assisted extraction were evaluated for the extraction of two types of acai bioactive compounds: Total anthocyanins (TAs) and total phenolic compounds (TPCs). For the extraction optimization, a Box Behnken factorial design of different variables in the following intervals was used: Methanol-water (25%–75%) for solvent composition, temperatures between 10 and 70 °C, amplitude in the range between 30% and 70% of the maximum amplitude −200 W), extraction solvent pH (2–7), the ratio for sample-solvent (0.5 g:10 mL–0.5 g:20 mL), and cycle between 0.2 and 0.7 s. The extraction kinetics were studied using different periods between 5 and 30 min. TA and TPC were analyzed by UHPLC and the Folin–Ciocalteu method, respectively. Optimized conditions for TA were: 51% MeOH in water, 31 °C temperature, pH 6.38, cycle 0.7 s, 65% amplitude, and 0.5 g:10 mL of sample-solvent ratio. Optimized conditions for the TPC were: 49% MeOH in water, 41 °C temperature, pH 6.98, cycle 0.2 s, 30% amplitude, and 0.5 g:10 mL of sample-solvent ratio. Both methods presented a relative standard deviation below 5% in the precision study. The suitability of the methods was tested in real samples. It was confirmed that these methods are feasible for the extraction of the studied bioactive compounds from different açai matrices.


2020 ◽  
Vol 10 (2) ◽  
pp. 560
Author(s):  
Gregorio Iván Peredo Pozos ◽  
Mario Alberto Ruiz-López ◽  
Juan Francisco Zamora Nátera ◽  
Carlos Álvarez Moya ◽  
Lucia Barrientos Ramírez ◽  
...  

Hibiscus sabdariffa (Roselle) is in high demand worldwide due to its beneficial health properties owing to the polyphenols content, mainly in the flower calyx. The objective of this study was to find the best conditions (time and liquid: solid ratio) to extract polyphenols from Roselle using Ultrasound-Assisted Extraction (UAE) (40 kHz, 180 W), with ethanol how solvent; as well as determine the yield of phenols, anthocyanin, flavonoids, tannins, antioxidant activity (DPPH) and antigenotoxic effect (comet assay). A traditional solid-liquid extraction was applied as a reference. Extraction times of 40 and 60 min resulted in the highest polyphenols (13.019 mg GAE/g dry weight (dw)), flavonoids (4.981 CE/g dw), anthocyanins (1.855 mg Cya3GE/g dw), and tannins (0.745 CE/g dw) recoveries and an antioxidant activity (DPPH) of 74.58%. Extracts from white calyces contained similar amounts of phenols and flavonoids, but very little condensed tannins (0.049 CE/g dw) and practically no anthocyanins. Extracts from red and white calyces, showed antigenotoxic activity and repaired capacity of damage caused by mutagens in human lymphocytes.


Molecules ◽  
2019 ◽  
Vol 24 (4) ◽  
pp. 711 ◽  
Author(s):  
Arief Md Yusof ◽  
Siti Abd Gani ◽  
Uswatun Zaidan ◽  
Mohd Halmi ◽  
Badrul Zainudin

This study investigates the ultrasound-assisted extraction of flavonoids from Malaysian cocoa shell extracts, and optimization using response surface methodology. There are three variables involved in this study, namely: ethanol concentration (70–90 v/v %), temperature (45–65 °C), and ultrasound irradiation time (30–60 min). All of the data were collected and analyzed for variance (ANOVA). The coefficient of determination (R2) and the model was significant in interaction between all variables (98% and p < 0.0001, respectively). In addition, the lack of fit test for the model was not of significance, with p > 0.0684. The ethanol concentration, temperature, and ultrasound irradiation time that yielded the maximum value of the total flavonoid content (TFC; 7.47 mg RE/g dried weight (DW)) was 80%, 55 °C, and 45 min, respectively. The optimum value from the validation of the experimental TFC was 7.23 ± 0.15 mg of rutin, equivalent per gram of extract with ethanol concentration, temperature, and ultrasound irradiation time values of 74.20%, 49.99 °C, and 42.82 min, respectively. While the modelled equation fits the data, the T-test is not significant, suggesting that the experimental values agree with those predicted by the response surface methodology models.


Sign in / Sign up

Export Citation Format

Share Document