scholarly journals The Transcriptomic Response of the Murine Thyroid Gland to Iodide Overload and the Role of the Nrf2 Antioxidant System

Antioxidants ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 884 ◽  
Author(s):  
Dionysios V. Chartoumpekis ◽  
Panos G. Ziros ◽  
Ilias Georgakopoulos-Soares ◽  
Adam A. T. Smith ◽  
Ana Claudia Marques ◽  
...  

Background: Thyroid follicular cells have physiologically high levels of reactive oxygen species because oxidation of iodide is essential for the iodination of thyroglobulin (Tg) during thyroid hormone synthesis. Thyroid follicles (the functional units of the thyroid) also utilize incompletely understood autoregulatory mechanisms to defend against exposure to excess iodide. To date, no transcriptomic studies have investigated these phenomena in vivo. Nuclear erythroid factor 2 like 2 (Nrf2 or Nfe2l2) is a transcription factor that regulates the expression of numerous antioxidant and other cytoprotective genes. We showed previously that the Nrf2 pathway regulates the antioxidant defense of follicular cells, as well as Tg transcription and Tg iodination. We, thus, hypothesized that Nrf2 might be involved in the transcriptional response to iodide overload. Methods: C57BL6/J wild-type (WT) or Nrf2 knockout (KO) male mice were administered regular water or water supplemented with 0.05% sodium iodide for seven days. RNA from their thyroids was prepared for next-generation RNA sequencing (RNA-Seq). Gene expression changes were assessed and pathway analyses were performed on the sets of differentially expressed genes. Results: Analysis of differentially expressed messenger RNAs (mRNAs) indicated that iodide overload upregulates inflammatory-, immune-, fibrosis- and oxidative stress-related pathways, including the Nrf2 pathway. Nrf2 KO mice showed a more pronounced inflammatory–autoimmune transcriptional response to iodide than WT mice. Compared to previously published datasets, the response patterns observed in WT mice had strong similarities with the patterns typical of Graves’ disease and papillary thyroid carcinoma (PTC). Long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) also responded to iodide overload, with the latter targeting mRNAs that participate mainly in inflammation pathways. Conclusions: Iodide overload induces the Nrf2 cytoprotective response and upregulates inflammatory, immune, and fibrosis pathways similar to autoimmune hyperthyroidism (Graves’ disease) and PTC.

2004 ◽  
pp. 73-80 ◽  
Author(s):  
AC Gerard ◽  
JF Denef ◽  
IM Colin ◽  
MF van den Hove

OBJECTIVE: Thyroglobulin (Tg) is stored within the follicular lumen mainly in a soluble form, but globules made of insoluble multimers are also present and considered to be a mechanism to store prohormone at high concentration. We investigated the immunohistochemical properties of these intrafollicular globules and their possible processing by thyroid cells upon stimulation in the human and in the mouse. DESIGN: Human thyroids (normal, Graves' disease and hot adenomas) and thyroids from old ICR mice without or with goitrogenic treatment were processed for light microscopy. METHODS: Immunohistochemistry for Tg with a polyclonal antibody and two monoclonal antibodies, one specific for thyroxine-rich-iodinated Tg and the other recognizing Tg independently of its iodine level, staining with periodic-acid-schiff, and binding of lectins specific for mannose and sialic acid were performed on all tIssue sections. Intrafollicular globules were quantified, with distinction between 'active' or 'hot' and 'hypofunctioning' or 'cold' follicles. RESULTS: In normal human and old mouse thyroids, the intrafollicular globules were strongly stained with PAS, but negative for the three anti-Tg antibodies and the two lectin-binding assays, while the surrounding soluble Tg was positive. In normal human tIssue, globules were more frequent in 'hypofunctioning' than in 'active' follicles. They were exceptional in Graves' disease and hot adenomas. In old mice, Tg globules were more frequent in 'cold' than in 'hot' follicles. Along with the goitrogen treatment, they became fewer, fragmented and more often present in follicles with a 'hot' aspect. CONCLUSIONS: Upon TSH stimulation, thyrocytes become able to process colloid globules suggesting that this stock of Tg can be used in vivo for thyroid hormone synthesis.


Thyroid ◽  
2001 ◽  
Vol 11 (6) ◽  
pp. 575-580 ◽  
Author(s):  
Denise Engelbrecht Zantut-Wittmann ◽  
Marcos Antonio Tambascia ◽  
Miriam Aparecida da Silva Trevisan ◽  
Glauce Aparecida Pinto ◽  
José Vassallo

2012 ◽  
Vol 44 (16) ◽  
pp. 799-810 ◽  
Author(s):  
N. Forde ◽  
G. B. Duffy ◽  
P. A. McGettigan ◽  
J. A. Browne ◽  
J. P. Mehta ◽  
...  

The aims of this study were to 1) identify the earliest transcriptional response of the bovine endometrium to the presence of the conceptus (using RNAseq), 2) investigate if these genes are regulated by interferon tau (IFNT) in vivo, and 3) determine if they are predictive of the pregnancy status of postpartum dairy cows. RNAseq identified 459 differentially expressed genes (DEGs) between pregnant and cyclic endometria on day 16. Quantitative real-time PCR analysis of selected genes revealed PARP12, ZNFX1, HERC6, IFI16, RNF213, and DDX58 expression increased in pregnant compared with cyclic endometria on day 16 and were directly upregulated by intrauterine infusion of IFNT in vivo for 2 h ( P < 0.05). On day 13 following estrous endometrial expression of nine genes increased [ ARHGAP1, MGC127874, LIMS2, TBC1D1, FBXL7, C25H16orf71, LOC507810, ZSWIM4, and one novel gene (ENSBTAT00000050193)] and seven genes decreased ( SERBP1, SRGAP2, AL7A1, TBK1, F2RL2, MGC128929, and WBSCR17; P < 0.05) in pregnant compared with cyclic heifers. Of these DEGs, significant differences in expression between pregnant and cyclic endometria were maintained on day 16 for F2RL2, LIMS2, LOC507810, MGC127874, TBC1D1, WBSCR17, and ZSWIM4 ( P < 0.05) both their expression was not directly regulated by IFNT in vivo. Analysis of the expression of selected interferon-stimulated genes in blood samples from postpartum dairy cows revealed a significant increase ( P < 0.05) in expression of ZXFX1, PARP12, SAMD9, and HERC6 on day 18 following artificial insemination in cows subsequently confirmed pregnant compared with cyclic controls. In conclusion, RNAseq identified a number of novel pregnancy-associated genes in the endometrium of cattle during early pregnancy that are not regulated by IFNT in vivo. In addition, a number of genes that are directly regulated by short term exposure to IFNT in vivo are differentially expressed on day 18 following estrus detection in the blood of postpartum dairy cows depending on their pregnancy status.


2020 ◽  
Author(s):  
Shahan Mamoor

Unraveling the host transcriptional response to viral infections is important for understanding host-pathogen interactions. We mined published microarray datasets (1-5) to identify conserved and specific differentially expressed genes in in vitro and in vivo models of coronavirus infections. We found significant transcriptional induction of the transcription factors BATF2 and FOXJ1 in Middle East Respiratory Syndrome (MERS) coronavirus infection in human cells in vitro; BATF2 was also differentially expressed in the lungs of mice infected with the Severe Acute Respiratory Syndrome (SARS) coronavirus 1 (SARS-CoV-1) but not in human cells infected with the human coronavirus HCoV-229E. These data highlight specific host induction of transcription factors by different members of the coronavirus family.


2010 ◽  
Vol 1 (1) ◽  
pp. 12 ◽  
Author(s):  
Scott L. Pratt ◽  
T. Ashley Burns ◽  
Erin Curry ◽  
Susan K. Duckett

Studies have recently indicated that the adipogenic process and the expression of genes involved in lipid metabolism may be regulated in part at the post-transcriptional level by a class of small RNA called microRNA (miRNA). The objectives of this study were to i) determine if miRNAs are differentially expressed, and ii) evaluate expression of known miRNA targets in bovine adipocytes. Bovine adipose samples were collected from castrated males fattened on a high concentrate diet (C) or pasture (PA) and were frozen in liquid nitrogen and stored at -80°C, or used to generate primary stromal-vascular cells (SV). SV cells were cultured to confluence (Control) or differentiated at confluence and harvested 2 (D2), 6 (D6), or 12 (D12) days post-confluence. A 3x3 microarray analysis was performed comparing Control and differentiated samples. miR-21, -221, and -222 (P less than 0.05) were differentially expressed. qRT-PCR was conducted using the<em> in vitro</em> samples, and all three miRNAs were down regulated on D2 (P less than 0.05). miR-221 and -222 were decreased on D6 compared to Control (P less than 0.05), but only miR-222 expression was decreased at D12 (P less than 0.05) compared to Control. miR-21 increased in expression compared to Control on D12 (P less than 0.05). <em>In vivo</em>, only miR-21 expression was affected and it was reduced in PA compared to C fat samples (P less than 0.05). Two targets of miR-21 are Programmed Cell Death Protein 4 (PDCD4) and Phosphatase and Tensin Homolog (PTEN), and neither messenger RNA was differentially expressed<em> in vitro</em> (P greater than 0.05), but both messenger RNAs were elevated for PA compared to C (P less than 0.05). These data show that miRNAs are differentially expressed in adipose cells and tissue, and that miR-21 may be involved in adipocyte function by regulating the translation of PDCD4 and PTEN.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Xiaopeng An ◽  
Haidong Ma ◽  
Yuhan Liu ◽  
Fu Li ◽  
Yuxuan Song ◽  
...  

Abstract Background MiRNAs act as pivotal post-transcriptional gene mediators in the regulation of diverse biological processes, including proliferation, development and apoptosis. Our previous study has showed that miR-101-3p is differentially expressed in dairy goat ovaries compared single with multiple litters. The objective of this research was to explore the potential function and molecular mechanism of miR-101-3p via its target STC1 in goat ovarian growth and development. Results cDNA libraries were constructed using goat granulosa cells transfected with miR-101-3p mimics and negative control by RNA-sequencing. In total, 142 differentially expressed unigenes (DEGs) were detected between two libraries, including 78 down-regulated and 64 up-regulated genes. GO and KEGG enrichment analysis showed the potential impacts of DEGs on ovarian development. STC1 was singled out from DEGs for further research owing to it regulates reproductive-related processes. In vitro, bioinformatics analysis and 3′-UTR assays confirmed that STC1 was a target of miR-101-3p. ELISA was performed to detect the estrogen (E2) and progesterone (P4) levels. CCK8, EdU and flow cytometry assays were performed to detect the proliferation and apoptosis of granulosa cells. Results showed that miR-101-3p regulated STAR, CYP19A1, CYP11A1 and 3β-HSD steroid hormone synthesis-associated genes by STC1 depletion, thus promoted E2 and P4 secretions. MiR-101-3p also affected the key protein PI3K, PTEN, AKT and mTOR in PI3K-AKT pathway by STC1, thereby suppressing proliferation and promoting apoptosis of granulosa cells. In vivo, the distribution and expression levels of miR-101-3p in mouse ovaries were determined through fluorescence in situ hybridisation (FISH). Immunohistochemistry results showed that STC1 expression was suppressed in mouse ovaries in miR-101-3p-agonist and siRNA-STC1 groups. Small and stunted ovarian fragments, decreased numbers of follicles at diverse stages were observed using Hematoxylin-eosin (HE) staining, thereby showing unusual ovarian development after miR-101-3p overexpression or STC1 depletion. Inhibition of miR-101-3p manifested opposite results. Conclusions Taken together, our results demonstrated a regulatory mechanism of miR-101-3p via STC1 in goat granulosa cells, and offered the first in vivo example of miR-101-3p and STC1 functions required for ovarian development.


1972 ◽  
Vol 71 (2_Suppla) ◽  
pp. S369-S380 ◽  
Author(s):  
Francis T. Kenney ◽  
Kai-Lin Lee ◽  
Charles D. Stiles

ABSTRACT Analyses of the response of hydrocortisone-induced tyrosine transaminase in cultured H-35 cells to inhibitors of translation (cycloheximide, puromycin) suggest: (1) that bound ribosomes stabilize messenger RNA in vivo; (2) that messenger is degraded at a rate determined by the rate of translation. Since specific messenger RNAs of mammalian cells are degraded at quite different rates, there may be extensive heterogeneity either in the rate at which ribosomes traverse different messengers or in the number of ribosomes which translate specific messenger RNAs.


1985 ◽  
Vol 108 (4) ◽  
pp. 511-517 ◽  
Author(s):  
Nandalal Bagchi ◽  
Birdie Shivers ◽  
Thomas R. Brown

Abstract. Iodine in excess is known to acutely inhibit thyroidal secretion. In the present study we have characterized the time course of the iodine effect in vitro and investigated the underlying mechanisms. Labelled thyroid glands were cultured in vitro in medium containing mononitrotyrosine, an inhibitor of iodotyrosine deiodinase. The rate of hydrolysis of labelled thyroglobulin was measured as the proportion of labelled iodotyrosines and iodothyronines recovered at the end of culture and was used as an index of thyroidal secretion. Thyrotrophin (TSH) administered in vivo acutely stimulated the rate of thyroglobulin hydrolysis. Addition of Nal to the culture medium acutely inhibited both basal and TSH-stimulated thyroglobulin hydrolysis. The effect of iodide was demonstrable after 2 h, maximal after 6 h and was not reversible upon removal of iodide. Iodide abolished the dibutyryl cAMP induced stimulation of thyroglobulin hydrolysis. Iodide required organic binding of iodine for its effect but new protein or RNA synthesis was not necessary. The inhibitory effects of iodide and lysosomotrophic agents such as NH4C1 and chloroquin on thyroglobulin hydrolysis were additive suggesting different sites of action. Iodide added in vitro altered the distribution of label in prelabelled thyroglobulin in a way that suggested increased coupling in the thyroglobulin molecule. These data indicate that 1) the iodide effect occurs progressively over a 6 h period, 2) continued presence of iodide is not necessary once the inhibition is established, 3) iodide exerts its action primarily at a post cAMP, prelysosomal site and 4) the effect requires organic binding of iodine, but not new RNA or protein synthesis. Our data are consistent with the hypothesis that excess iodide acutely inhibits thyroglobulin hydrolysis by increasing the resistance of thyroglobulin to proteolytic degradation through increased iodination and coupling.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Ying Xie ◽  
Xiaofeng Hang ◽  
Wensheng Xu ◽  
Jing Gu ◽  
Yuanjing Zhang ◽  
...  

Abstract Background Most of the biological functions of circular RNAs (circRNAs) and the potential underlying mechanisms in hepatocellular carcinoma (HCC) have not yet been discovered. Methods In this study, using circRNA expression data from HCC tumor tissues and adjacent tissues from the Gene Expression Omnibus database, we identified out differentially expressed circRNAs and verified them by qRT-PCT. Functional experiments were performed to evaluate the effects of circFAM13B in HCC in vitro and in vivo. Results We found that circFAM13B was the most significantly differentially expressed circRNA in HCC tissue. Subsequently, in vitro and in vivo studies also demonstrated that circFAM13B promoted the proliferation of HCC. Further studies revealed that circFAM13B, a sponge of miR-212, is involved in the regulation of E2F5 gene expression by competitively binding to miR-212, inhibits the activation of the P53 signalling pathway, and promotes the proliferation of HCC cells. Conclusions Our findings revealed the mechanism underlying the regulatory role played by circFAM13B, miR-212 and E2F5 in HCC. This study provides a new theoretical basis and novel target for the clinical prevention and treatment of HCC.


2021 ◽  
Vol 11 (4) ◽  
Author(s):  
Elizabeth W Hunsaker ◽  
Chen-Hsin Albert Yu ◽  
Katherine J Franz

Abstract The ability of pathogens to maintain homeostatic levels of essential biometals is known to be important for survival and virulence in a host, which itself regulates metal availability as part of its response to infection. Given this importance of metal homeostasis, we sought to address how the availability of copper in particular impacts the response of the opportunistic fungal pathogen Candida albicans to treatment with the antifungal drug fluconazole. The present study reports whole transcriptome analysis via time-course RNA-seq of C. albicans cells exposed to fluconazole with and without 10 µM supplemental CuSO4 added to the growth medium. The results show widespread impacts of small changes in Cu availability on the transcriptional response of C. albicans to fluconazole. Of the 2359 genes that were differentially expressed under conditions of cotreatment, 50% were found to be driven uniquely by exposure to both Cu and fluconazole. The breadth of metabolic processes that were affected by cotreatment illuminates a fundamental intersectionality between Cu metabolism and fungal response to drug stress. More generally, these results show that seemingly minor fluctuations in Cu availability are sufficient to shift cells’ transcriptional response to drug stress. Ultimately, the findings may inform the development of new strategies that capitalize on drug-induced vulnerabilities in metal homeostasis pathways.


Sign in / Sign up

Export Citation Format

Share Document