scholarly journals Post-Translational S-Nitrosylation of Proteins in Regulating Cardiac Oxidative Stress

Antioxidants ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1051 ◽  
Author(s):  
Xiaomeng Shi ◽  
Hongyu Qiu

Like other post-translational modifications (PTMs) of proteins, S-nitrosylation has been considered a key regulatory mechanism of multiple cellular functions in many physiological and disease conditions. Emerging evidence has demonstrated that S-nitrosylation plays a crucial role in regulating redox homeostasis in the stressed heart, leading to discoveries in the mechanisms underlying the pathogenesis of heart diseases and cardiac protection. In this review, we summarize recent studies in understanding the molecular and biological basis of S-nitrosylation, including the formation, spatiotemporal specificity, homeostatic regulation, and association with cellular redox status. We also outline the currently available methods that have been applied to detect S-nitrosylation. Additionally, we synopsize the up-to-date studies of S-nitrosylation in various cardiac diseases in humans and animal models, and we discuss its therapeutic potential in cardiac protection. These pieces of information would bring new insights into understanding the role of S-nitrosylation in cardiac pathogenesis and provide novel avenues for developing novel therapeutic strategies for heart diseases.

2019 ◽  
Vol 12 (578) ◽  
pp. eaav4663 ◽  
Author(s):  
Miriam Eckstein ◽  
Martin Vaeth ◽  
Francisco J. Aulestia ◽  
Veronica Costiniti ◽  
Serena N. Kassam ◽  
...  

Store-operated Ca2+ entry (SOCE) channels are highly selective Ca2+ channels activated by the endoplasmic reticulum (ER) sensors STIM1 and STIM2. Their direct interaction with the pore-forming plasma membrane ORAI proteins (ORAI1, ORAI2, and ORAI3) leads to sustained Ca2+ fluxes that are critical for many cellular functions. Mutations in the human ORAI1 gene result in immunodeficiency, anhidrotic ectodermal dysplasia, and enamel defects. In our investigation of the role of ORAI proteins in enamel, we identified enamel defects in a patient with an ORAI1 null mutation. Targeted deletion of the Orai1 gene in mice showed enamel defects and reduced SOCE in isolated enamel cells. However, Orai2−/− mice showed normal enamel despite having increased SOCE in the enamel cells. Knockdown experiments in the enamel cell line LS8 suggested that ORAI2 and ORAI3 modulated ORAI1 function, with ORAI1 and ORAI2 being the main contributors to SOCE. ORAI1-deficient LS8 cells showed altered mitochondrial respiration with increased oxygen consumption rate and ATP, which was associated with altered redox status and enhanced ER Ca2+ uptake, likely due to S-glutathionylation of SERCA pumps. Our findings demonstrate an important role of ORAI1 in Ca2+ influx in enamel cells and establish a link between SOCE, mitochondrial function, and redox homeostasis.


2016 ◽  
Vol 2016 ◽  
pp. 1-13 ◽  
Author(s):  
Min Hee Choi ◽  
Jin Rong Ow ◽  
Nai-Di Yang ◽  
Reshma Taneja

Oxidative stress is a loss of balance between the production of reactive oxygen species during cellular metabolism and the mechanisms that clear these species to maintain cellular redox homeostasis. Increased oxidative stress has been associated with muscular dystrophy, and many studies have proposed mechanisms that bridge these two pathological conditions at the molecular level. In this review, the evidence indicating a causal role of oxidative stress in the pathogenesis of various muscular dystrophies is revisited. In particular, the mediation of cellular redox status in dystrophic muscle by NF-κB pathway, autophagy, telomere shortening, and epigenetic regulation are discussed. Lastly, the current stance of targeting these pathways using antioxidant therapies in preclinical and clinical trials is examined.


2021 ◽  
Vol 12 ◽  
Author(s):  
Zhenyu Wu ◽  
Patrick Li ◽  
Yuzi Tian ◽  
Wenlu Ouyang ◽  
Jessie Wai-Yan Ho ◽  
...  

Peptidylarginine deiminases (PADs) are a group of enzymes that catalyze post-translational modifications of proteins by converting arginine residues into citrullines. Among the five members of the PAD family, PAD2 and PAD4 are the most frequently studied because of their abundant expression in immune cells. An increasing number of studies have identified PAD2 as an essential factor in the pathogenesis of many diseases. The successes of preclinical research targeting PAD2 highlights the therapeutic potential of PAD2 inhibition, particularly in sepsis and autoimmune diseases. However, the underlying mechanisms by which PAD2 mediates host immunity remain largely unknown. In this review, we will discuss the role of PAD2 in different types of cell death signaling pathways and the related immune disorders contrasted with functions of PAD4, providing novel therapeutic strategies for PAD2-associated pathology.


2017 ◽  
Author(s):  
Meytal Radzinski ◽  
Rosi Fasler ◽  
Ohad Yogev ◽  
William Breuer ◽  
Nadav Shai ◽  
...  

AbstractCellular redox status affects diverse cellular functions, including proliferation, protein homeostasis, and aging. Thus, individual differences in redox status can give rise to distinct sub-populations even among cells with identical genetic backgrounds. Here, we have created a novel methodology to track redox status at single cell resolution using the redox-sensitive probe roGFP. Our method allows identification and sorting of sub-populations with different oxidation levels in either the cytosol, mitochondria or peroxisomes. Using this approach we defined redox-dependent heterogeneity of yeast cells, and characterized growth, as well as proteomic and transcriptomic profiles of subpopulations of cells that differ in their redox status, but are similar in age. We report that, starting in late logarithmic growth, cells of the same age have a bi-modal distribution of oxidation status. A comparative proteomic analysis between these populations identified three key proteins, Hsp30, Dhh1, and Pnc1, which affect basal oxidation levels and may serve as first line of defense proteins in redox homeostasis.


eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Meytal Radzinski ◽  
Rosi Fassler ◽  
Ohad Yogev ◽  
William Breuer ◽  
Nadav Shai ◽  
...  

Cellular redox status affects diverse cellular functions, including proliferation, protein homeostasis, and aging. Thus, individual differences in redox status can give rise to distinct sub-populations even among cells with identical genetic backgrounds. Here, we have created a novel methodology to track redox status at single cell resolution using the redox-sensitive probe Grx1-roGFP2. Our method allows identification and sorting of sub-populations with different oxidation levels in either the cytosol, mitochondria or peroxisomes. Using this approach, we defined a redox-dependent heterogeneity of yeast cells and characterized growth, as well as proteomic and transcriptomic profiles of distinctive redox subpopulations. We report that, starting in late logarithmic growth, cells of the same age have a bi-modal distribution of oxidation status. A comparative proteomic analysis between these populations identified three key proteins, Hsp30, Dhh1, and Pnc1, which affect basal oxidation levels and may serve as first line of defense proteins in redox homeostasis.


Molecules ◽  
2021 ◽  
Vol 26 (2) ◽  
pp. 435
Author(s):  
Elena Kalinina ◽  
Maria Novichkova

S-glutathionylation and S-nitrosylation are reversible post-translational modifications on the cysteine thiol groups of proteins, which occur in cells under physiological conditions and oxidative/nitrosative stress both spontaneously and enzymatically. They are important for the regulation of the functional activity of proteins and intracellular processes. Connecting link and “switch” functions between S-glutathionylation and S-nitrosylation may be performed by GSNO, the generation of which depends on the GSH content, the GSH/GSSG ratio, and the cellular redox state. An important role in the regulation of these processes is played by Trx family enzymes (Trx, Grx, PDI), the activity of which is determined by the cellular redox status and depends on the GSH/GSSG ratio. In this review, we analyze data concerning the role of GSH/GSSG in the modulation of S-glutathionylation and S-nitrosylation and their relationship for the maintenance of cell viability.


2018 ◽  
Vol 24 (20) ◽  
pp. 2283-2302 ◽  
Author(s):  
Vivian B. Neis ◽  
Priscila B. Rosa ◽  
Morgana Moretti ◽  
Ana Lucia S. Rodrigues

Heme oxygenase (HO) family catalyzes the conversion of heme into free iron, carbon monoxide and biliverdin. It possesses two well-characterized isoforms: HO-1 and HO-2. Under brain physiological conditions, the expression of HO-2 is constitutive, abundant and ubiquitous, whereas HO-1 mRNA and protein are restricted to small populations of neurons and neuroglia. HO-1 is an inducible enzyme that has been shown to participate as an essential defensive mechanism for neurons exposed to oxidant challenges, being related to antioxidant defenses in certain neuropathological conditions. Considering that neurodegenerative diseases (Alzheimer’s Disease (AD), Parkinson’s Disease (PD) and Multiple Sclerosis (MS)) and neuropsychiatric disorders (depression, anxiety, Bipolar Disorder (BD) and schizophrenia) are associated with increased inflammatory markers, impaired redox homeostasis and oxidative stress, conditions that may be associated with alterations in HO-levels/activity, the purpose of this review is to present evidence on the possible role of HO-1 in these Central Nervous System (CNS) diseases. In addition, the possible therapeutic potential of targeting brain HO-1 is explored in this review.


Genes ◽  
2019 ◽  
Vol 10 (10) ◽  
pp. 752 ◽  
Author(s):  
Rawat ◽  
Kadian ◽  
Gupta ◽  
Kumar ◽  
Chain ◽  
...  

Pancreatic cancer is one of the most aggressive malignancies, accounting for more than 45,750 deaths annually in the U.S. alone. The aggressive nature and late diagnosis of pancreatic cancer, coupled with the limitations of existing chemotherapy, present the pressing need for the development of novel therapeutic strategies. Recent reports have demonstrated a critical role of microRNAs (miRNAs) in the initiation, progression, and metastasis of cancer. Furthermore, aberrant expressions of miRNAs have often been associated with the cause and consequence of pancreatic cancer, emphasizing the possible use of miRNAs in the effective management of pancreatic cancer patients. In this review, we provide a brief overview of miRNA biogenesis and its role in fundamental cellular process and miRNA studies in pancreatic cancer patients and animal models. Subsequent sections narrate the role of miRNA in, (i) cell cycle and proliferation; (ii) apoptosis; (iii) invasions and metastasis; and (iv) various cellular signaling pathways. We also describe the role of miRNA’s in pancreatic cancer; (i) diagnosis; (ii) prognosis and (iii) therapeutic intervention. Conclusion section describes the gist of review with future directions.


2016 ◽  
Vol 397 (7) ◽  
pp. 585-593 ◽  
Author(s):  
Yi Hui Yee ◽  
Stephen Jun Fei Chong ◽  
Shazib Pervaiz

Abstract Across a wide spectrum of cellular redox status, there emerges a dichotomy of responses in terms of cell survival/proliferation and cell death. Of note, there is emerging evidence that the anti-apoptotic protein, Bcl-2, in addition to its conventional activity of titrating the pro-apoptotic effects of proteins such as Bax and Bak at the mitochondria, also impacts cell fate decisions via modulating cellular redox metabolism. In this regard, both pro- and anti-oxidant effects of Bcl-2 overexpression have been described under different conditions and cellular contexts. In this short review, we attempt to analyze existing observations and present a probable explanation for the seemingly conflicting redox regulating activity of Bcl-2 from the standpoint of its pro-survival function. The consequential effect(s) of the dual redox functions of Bcl-2 are also discussed, particularly from the viewpoint of developing novel therapeutic strategies against cancers rendered refractory due to the aberrant expression of Bcl-2.


Cells ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 1476 ◽  
Author(s):  
Mojca Trstenjak Prebanda ◽  
Janja Završnik ◽  
Boris Turk ◽  
Nataša Kopitar Jerala

Stefin B (cystatin B) is an intracellular inhibitor of cysteine cathepsins and mutations in the stefin B gene, resulting in the development of Unverricht–Lundborg disease, which is a form of myoclonic epilepsy. It was suggested that a key mechanism behind stefin B-mediated disease progression was impaired redox homeostasis. Stefin B-deficient mice were found more sensitive to lipopolysaccharide (LPS)-induced sepsis as a consequence of increased expression of caspase-11 and Nucleotide-binding oligomerization domain, Leucine rich Repeat and Pyrin domain containing (NLRP nflammasome activation and higher levels of mitochondrial reactive oxygen species (ROS). In the present study, we investigated if LPS-triggered oxidative stress affected the protein levels and redox status of redox sensitive proteins—thioredoxin, peroxiredoxins, and superoxide dismutases in macrophages and spleens of LPS-injected mice. LPS challenge was found to result in a marked elevation in mitochondrial peroxiredoxin 3 (Prx3), sulfiredoxin, and superoxide dismutase 2 (Sod2) in stefin B-deficient macrophages and spleens. We determined that sulfiredoxin is targeted to mitochondria after LPS challenge. In conclusion, the upregulation of mitochondrial redox-sensitive proteins Prx3 and Sod2 in stefin B-deficient cells implies a protective role of stefin B in mitochondrial function.


Sign in / Sign up

Export Citation Format

Share Document