scholarly journals Acute Effects of Midsole Bending Stiffness on Lower Extremity Biomechanics during Layup Jumps

2020 ◽  
Vol 10 (1) ◽  
pp. 397
Author(s):  
Zhiqiang Zhu ◽  
Weijie Fu ◽  
En Shao ◽  
Lu Li ◽  
Linjie Song ◽  
...  

Purpose: This study aims to investigate the acute effects of shoe midsole stiffness on the joint biomechanics of the lower extremities during specific basketball movements. Methods: Thirty participants wearing stiff midsole shoes (SS) and control shoes (CS) performed layup jumps (LJs) while the kinematics and ground reaction forces were simultaneously collected via the Vicon motion capture system and Kistler force plates. Furthermore, the joint angles, range of motion (ROM), joint power, joint energy, and jump height were calculated. Results: No significant differences were observed between SS and CS conditions for both jump height and the metatarsophalangeal (MTP) joint biomechanics except that the minimum angular velocity of the MTP joint was significantly lower in SS the condition. However, the ROM in the ankle joint was significantly greater in the SS condition than in the CS condition (p < 0.05). Additionally, the maximum plantarflexion power, energy absorption (EA), and energy generation (EG) in the ankle joint were significantly greater in the SS condition than in the CS condition (p < 0.05). Compared with the CS condition, jump height in the SS condition did not increase. Conclusion: During a single LJ, the longitudinal midsole stiffness did not influence the jump height and MTP joint biomechanical patterns but significantly increased the maximum power, EA, and EG during the push-off phase of the ankle joint. These preliminary results indicate that wearing SS could change the ankle joint mechanical patterns by modulating the lower extremity kinetic chain, and may enhance muscle strength in the ankle.

2014 ◽  
Vol 23 (4) ◽  
pp. 319-329
Author(s):  
Randy J. Schmitz ◽  
John C. Cone ◽  
Timothy J. Copple ◽  
Robert A. Henson ◽  
Sandra J. Shultz

Context:Potential biomechanical compensations allowing for maintenance of maximal explosive performance during prolonged intermittent exercise, with respect to the corresponding rise in injury rates during the later stages of exercise or competition, are relatively unknown.Objective:To identify lower-extremity countermovement-jump (CMJ) biomechanical factors using a principal-components approach and then examine how these factors changed during a 90-min intermittent-exercise protocol (IEP) while maintaining maximal jump height.Design:Mixed-model design.Setting:Laboratory.Participants:Fifty-nine intermittent-sport athletes (30 male, 29 female) participated in experimental and control conditions.Interventions:Before and after a dynamic warm-up and every 15 min during the 1st and 2nd halves of an individually prescribed 90-min IEP, participants were assessed on rating of perceived exertion, sprint/cut speed, and 3-dimensional CMJ biomechanics (experimental). On a separate day, the same measures were obtained every 15 min during 90 min of quiet rest (control).Main Outcome Measures:Univariate piecewise growth models analyzed progressive changes in CMJ performance and biomechanical factors extracted from a principal-components analysis of the individual biomechanical dependent variables.Results:While CMJ height was maintained during the 1st and 2nd halves, the body descended less and knee kinetic and energetic magnitudes decreased as the IEP progressed.Conclusions:The results indicate that vertical-jump performance is maintained along with progressive biomechanical changes commonly associated with decreased performance. A better understanding of lower-extremity biomechanics during explosive actions in response to IEP allows us to further develop and individualize performance training programs.


2019 ◽  
Vol 54 (6) ◽  
pp. 708-717 ◽  
Author(s):  
Hyunsoo Kim ◽  
S. Jun Son ◽  
Matthew K. Seeley ◽  
J. Ty Hopkins

Context Patients with chronic ankle instability (CAI) exhibit deficits in neuromuscular control, resulting in altered movement strategies. However, no researchers have examined neuromuscular adaptations to dynamic movement strategies during multiplanar landing and cutting among patients with CAI, individuals who are ankle-sprain copers, and control participants. Objective To investigate lower extremity joint power, stiffness, and ground reaction force (GRF) during a jump-landing and cutting task among CAI, coper, and control groups. Design Cross-sectional study. Setting Laboratory. Patients or Other Participants A total of 22 patients with CAI (age = 22.7 ± 2.0 years, height = 174.6 ± 10.4 cm, mass = 73.4 ± 12.1 kg), 22 ankle-sprain copers (age = 22.1 ± 2.1 years, height = 173.8 ± 8.2 cm, mass = 72.6 ± 12.3 kg), and 22 healthy control participants (age = 22.5 ± 3.3 years, height = 172.4 ± 13.3 cm, mass = 72.6 ± 18.7 kg). Intervention(s) Participants performed 5 successful trials of a jump-landing and cutting task. Main Outcome Measure(s) Using motion-capture cameras and a force plate, we collected lower extremity ankle-, knee-, and hip-joint power and stiffness and GRFs during the jump-landing and cutting task. Functional analyses of variance were used to evaluate between-groups differences in these dependent variables throughout the contact phase of the task. Results Compared with the coper and control groups, the CAI group displayed (1) up to 7% of body weight more posterior and 52% of body weight more vertical GRF during initial landing followed by decreased GRF during the remaining stance and 22% of body weight less medial GRF across most of stance; (2) 8.8 W/kg less eccentric and 3.2 W/kg less concentric ankle power, 6.4 W/kg more eccentric knee and 4.8 W/kg more eccentric hip power during initial landing, and 5.0 W/kg less eccentric knee and 3.9 W/kg less eccentric hip power; and (3) less ankle- and knee-joint stiffness during the landing phase. Concentric power patterns were similar to eccentric power patterns. Conclusions The CAI group demonstrated altered neuromechanics, redistributing energy absorption from the distal (ankle) to the proximal (knee and hip) joints, which coincided with decreased ankle and knee stiffness during landing. Our data suggested that although the coper and control groups showed similar landing and cutting strategies, the CAI group used altered strategies to modulate impact forces during the task.


2005 ◽  
Vol 21 (1) ◽  
pp. 3-17 ◽  
Author(s):  
Songning Zhang ◽  
Kurt Clowers ◽  
Charles Kohstall ◽  
Yeon-Joo Yu

The purpose of this study was to examine effects of shoe midsole densities and mechanical demands (landing heights) on impact shock attenuation and lower extremity biomechanics during a landing activity. Nine healthy male college athletes performed 5 trials of step-off landing in each of 9 test conditions, i.e., a combination of landings in shoes of 3 midsole densities (soft, normal, hard) from each of 3 landing potential energy (PE) levels (low, median, high). Ground reaction forces (GRF), accelerations (ACC) of the tibia and forehead, and sagittal kinematic data were sampled simultaneously. A 3 × 3 two-way (surface × height) repeated-measures analysis of variance (ANOVA) was performed on selected kinematic, ACC, and GRF variables; a 3 × 3 × 3 three-way (surface × height × joint) ANOVA was performed on variables related to eccentric muscular work. The GRF results showed that the forefoot peak GRF in the normal and hard midsoles was significantly greater than the soft midsole at the low and median PEs. Rearfoot peak GRF was significantly greater for the hard midsole than for the soft and normal midsoles at the median and high PEs, respectively. The peak head and tibia peak ACC were also attenuated in similar fashion. Kinematic variables did not vary significantly across different midsoles, nor did energy absorbed through lower extremity extensors in response to the increased shoe stiffness. Knee joint extensors were shown to be dominant in attenuating the forefoot impact force across the landing heights. The results showed limited evidence of impact-attenuating benefits of the soft midsole in the basketball shoes.


2012 ◽  
Vol 6 (4) ◽  
Author(s):  
Sai-Kit Wu ◽  
Tad Driver ◽  
Xiangrong Shen

Lower-extremity orthosis is a type of wearable mechanical device that serves a wide variety of important biomedical purposes, such as gait assistance and rehabilitative training. Due primarily to the constraints associated with actuation technology, the majority of current lower-extremity orthoses are either passive or tethered to external power sources, limiting the functionality of such devices. In this paper, the authors present the research results towards a fully mobile (i.e., untethered) powered lower-limb orthosis, leveraging the high power density of pneumatic actuators for the joint power generation. The design of the orthosis is presented, with the objectives of providing full locomotive assistance in multiple common locomotive modes and generating a minimum level of restriction to the wearer's daily activities. For the control of the orthosis, a finite-state impedance-based controller is developed, which simulates an artificial impedance in order to enable the natural interaction with the wearer. Preliminary testing on a healthy subject demonstrated that the orthosis was able to provide a natural gait and a comfortable user experience in the treadmill walking experiments.


2020 ◽  
Vol 10 (10) ◽  
pp. 3594
Author(s):  
Rebecca Alonzo ◽  
Crosby Teo ◽  
Jing Wen Pan ◽  
Phillis Soek Po Teng ◽  
Thorsten Sterzing ◽  
...  

This study investigated how midsole hardness of basketball footwear affects lower extremity biomechanics and impacts perception in drop vertical jumps. Eighteen male basketball players performed drop vertical jumps from three heights (31 cm, 46 cm, 61 cm) in basketball shoes of different midsole hardness (50, 60 Asker C). Biomechanical variables of the lower extremity and subjective perception were measured. This study found a significant drop height effect on the lower extremity biomechanics (p < 0.05), with greater ground reaction forces, joint kinetics, and prelanding muscle activation levels observed at higher drop heights. Basketball shoes with a softer midsole led to higher forefoot peak force (p = 0.028) amid lower rearfoot peak force (p = 0.046), lower peak flexion moments at the ankle (p = 0.024) and hip joints (p = 0.029), and greater prelanding muscle activation in the rectus femoris (p = 0.042) and tibialis anterior (p = 0.043). It is concluded that changing midsole hardness within a commercially relevant range triggered a different prelanding muscle activation strategy and hence altered the magnitudes of ground reaction forces and joint loadings during landing. Subjectively, participants perceived higher landing impacts with greater drop heights, though the strength of the associations were weak.


2022 ◽  
Vol 12 (2) ◽  
pp. 585
Author(s):  
Jonathan Sinclair ◽  
Nachiappan Chockalingam ◽  
Paul John Taylor

Patellofemoral pain (PFP) is a common atraumatic knee pathology in runners, with a complex multifactorial aetiology influenced by sex differences. This retrospective case–control study therefore aimed to evaluate lower limb kinetics and kinematics in symptomatic and control male and female runners using musculoskeletal simulation. Lower extremity biomechanics were assessed in 40 runners with PFP (15 females and 25 males) and 40 controls (15 females and 25 males), whilst running at a self-selected velocity. Lower extremity biomechanics were explored using a musculoskeletal simulation approach. Four intergroup comparisons—(1) overall PFP vs. control; (2) male PFP vs. male control; (3) female PFP vs. female control; and (4) male PFP vs. female PFP—were undertaken using linear mixed models. The overall (stress per mile: PFP = 1047.49 and control = 812.93) and female (peak stress: PFP = 13.07 KPa/BW and control = 10.82 KPa/BW) comparisons showed increased patellofemoral joint stress indices in PFP runners. A significantly lower strike index was also shown in PFP runners in the overall (PFP = 17.75% and control = 33.57%) and female analyses (PFP = 15.49% and control = 40.20%), revealing a midfoot strike in control, and a rearfoot pattern in PFP runners. Peak rearfoot eversion and contralateral pelvic drop range of motion (ROM) were shown to be greater in PFP runners in the overall (eversion: PFP = −8.15° and control = −15.09°/pelvic drop ROM: PFP = 3.64° and control = 1.88°), male (eversion: PFP = −8.05° and control = −14.69°/pelvic drop ROM: PFP = 3.16° and control = 1.77°) and female (eversion: PFP = 8.28° and control = −15.75°/pelvic drop ROM: PFP = 3.64° and control = 1.88°) PFP runners, whilst female PFP runners (11.30°) exhibited a significantly larger peak hip adduction compared to PFP males (7.62°). The findings from this investigation highlight biomechanical differences between control and PFP runners, as well as demonstrating distinctions in PFP presentation for many parameters between sexes, highlighting potential risk factors for PFP that may be addressed through focused intervention modalities, and also the need, where appropriate, for sex-specific targeted treatment approaches.


Sports ◽  
2019 ◽  
Vol 7 (1) ◽  
pp. 27 ◽  
Author(s):  
Christian Baumgart ◽  
Jürgen Freiwald ◽  
Matthias Kühnemann ◽  
Thilo Hotfiel ◽  
Moritz Hüttel ◽  
...  

When considering the scientific lack concerning the execution and acute effects and mechanism of foam rolling (FR), this study has evaluated the biomechanical loads by the force-time characteristics during two popular FR exercises. Additionally, the acute effects of FR on jump height and muscular stiffness were simultaneously assessed. Within a randomized cross-over design, 20 males (26.6 ± 2.7 years; 181.6 ± 6.8 cm; 80.4 ± 9.1 kg) were tested on different days pre, post, and 15 and 30 min after three interventions. The interventions consisted of a FR procedure for the calf and anterior thigh of both legs, 10 min ergometer cycling, and resting as a control. Stiffness was measured via mechanomyography at the thigh, calf, and ankle. The vertical ground reaction forces were measured under the roller device during FR as well as to estimate jump height. Within the FR exercises, the forces decreased from the proximal to distal position, and were in mean 34 and 32% of body weight for the calves and thighs, respectively. Importantly, with 51 to 55%, the maxima of the individual mean forces were considerably higher. Jump height did not change after FR, but increased after cycling. Moreover, stiffness of the thigh decreased after FR and increased after cycling.


2021 ◽  
Vol 9 (7) ◽  
pp. 232596712110152
Author(s):  
Lucas G. Teske ◽  
Edward C. Beck ◽  
Garrett S. Bullock ◽  
Kristen F. Nicholson ◽  
Brian R. Waterman

Background: Although lower extremity biomechanics has been correlated with traditional metrics among baseball players, its association with advanced statistical metrics has not been evaluated. Purpose: To establish normative biomechanical parameters during the countermovement jump (CMJ) among Major League Baseball (MLB) players and evaluate the relationship between CMJ-developed algorithms and advanced statistical metrics. Study Design: Cohort study; Level of evidence, 3. Methods: MLB players in 2 professional organizations performed the CMJ at the beginning of each baseball season from 2013 to 2017. We collected ground-reaction force data including the eccentric rate of force development (“load”), concentric vertical force (“explode”), and concentric vertical impulse (“drive”) as well as the Sparta Score. The advanced statistical metrics from each baseball season (eg, fielding independent pitching [FIP], weighted stolen base runs [wSB], and weighted on-base average) were also gathered for the study participants. The minimal detectable change (MDC) was calculated for each CMJ variable to establish normative parameters. Pearson coefficient analysis and regression trees were used to evaluate associations between CMJ data and advanced statistical metrics for the players. Results: A total of 151 pitchers and 138 batters were included in the final analysis. The MDC for “load,” “explode,” “drive,” and the Sparta Score was 10.3, 8.1, 8.7, and 4.6, respectively, and all demonstrated good reliability (intraclass correlation coefficient > 0.75). There was a weak but statistically significant correlation between the Sparta Score and wSB ( r = 0.23; P = .007); however, there were no significant correlations with any other advanced metrics. Regression trees demonstrated superior FIP with higher Sparta Scores in older pitchers compared with younger pitchers. Conclusion: There was a positive but weak correlation between the Sparta Score and base-stealing performance among professional baseball players. Additionally, older pitchers with a higher Sparta Score had statistically superior FIP compared with younger pitchers with a similar Sparta Score after adjusting for age.


2021 ◽  
Vol 9 (5) ◽  
pp. 232596712110034
Author(s):  
Toufic R. Jildeh ◽  
Fabien Meta ◽  
Jacob Young ◽  
Brendan Page ◽  
Kelechi R. Okoroha

Background: Impaired neuromuscular function after concussion has recently been linked to increased risk of lower extremity injuries in athletes. Purpose: To determine if National Football League (NFL) athletes have an increased risk of sustaining an acute, noncontact lower extremity injury in the 90-day period after return to play (RTP) and whether on-field performance differs pre- and postconcussion. Study Design: Cohort study, Level of evidence, 3. Methods: NFL concussions in offensive players from the 2012-2013 to the 2016-2017 seasons were studied. Age, position, injury location/type, RTP, and athlete factors were noted. A 90-day RTP postconcussive period was analyzed for lower extremity injuries. Concussion and injury data were obtained from publicly available sources. Nonconcussed, offensive skill position NFL athletes from the same period were used as a control cohort, with the 2014 season as the reference season. Power rating performance metrics were calculated for ±1, ±2, and ±3 seasons pre- and postconcussion. Conditional logistic regression was used to determine associations between concussion and lower extremity injury as well as the relationship of concussions to on-field performance. Results: In total, 116 concussions were recorded in 108 NFL athletes during the study period. There was no statistically significant difference in the incidence of an acute, noncontact lower extremity injury between concussed and control athletes (8.5% vs 12.8%; P = .143), which correlates with an odds ratio of 0.573 (95% CI, 0.270-1.217). Days (66.4 ± 81.9 days vs 45.1 ± 69.2 days; P = .423) and games missed (3.67 ± 3.0 vs 2.9 ± 2.7 games; P = .470) were similar in concussed athletes and control athletes after a lower extremity injury. No significant changes in power ratings were noted in concussed athletes in the acute period (±1 season to injury) when comparing pre- and postconcussion. Conclusion: Concussed, NFL offensive athletes did not demonstrate increased odds of acute, noncontact, lower extremity injury in a 90-day RTP period when compared with nonconcussed controls. Immediate on-field performance of skill position players did not appear to be affected by concussion.


Sign in / Sign up

Export Citation Format

Share Document