scholarly journals Analytical Non-Stationary Satellite to Aircraft Channel Modeling over Open Area Based on Regular Shaped Geometry-Based Stochastic Model

2020 ◽  
Vol 10 (15) ◽  
pp. 5041
Author(s):  
Zaixue Wei ◽  
Qipeng Tang ◽  
Jian Geng ◽  
Sibo Chen ◽  
Lin Sang ◽  
...  

Channel modeling is crucial to the development and evaluation of modern wireless communication systems including satellite communication system, since there might be critical safty-of-life applications. Also, the channel model is of great importance to the performance evaluation of mobile communication systems. In recent years, encouraged by the widely application of unmanned aerial vehicles, the research on channel modeling for aerial and aeronautical communications attract lots of interests. In the published articles, stationary and non-stationary channel models have been developed for air-to-ground communications based on regular shaped geometry-based stochastic model (RS-GBSM). The modeling of air-to-air or satellite-to-aircraft (S2A) communication is still quite simple or completely lacking. For obtaining more precise model of S2A channel, this paper presents an analytical non-stationary S2A channel mode based on RS-GBSM with considerations on line-of-sight path, specular reflection path, and ground scattering path. Analytical expressions of the channel impulse responses, the transfer functions, the auto-correlation functions, and the Doppler power spectrum density based on 3-path model are derived and simulated. Also, the distributions of the path antennation, the path delay, and the normalized Doppler shift based on uniform distribution of the scatterers are derived, simulated and fitted.

Author(s):  
Yusuf Durachman ◽  

MISO (Multiple-Input Single-Output) similar architecture of most terrestrial wireless network networks instead of more and more scientists striving to apply MISO technology to satellite technology, it can be used to achieve a lower rate of application bit error and risk of complications, while managing increased power boost technology. In mitigating the phenomenon increasingly crowded networks, sites, and increasingly strained sources and frequency of orbital interacting. That channel electricity, bit error rate, and single-band dual-polarized probabilities of MISO outage communication systems are evaluated in the paper. In the first step, when the XPD (Cross-Polarization Discrimination) antenna in a certain organism is greater than 1. With the XPD change, the channel throughput increases in scale linearly. Second, under BPSK modulation, it analyses the bit error rate BER of the specification. The design incorporates a sufficiently low (BER) when the SNR is substantial; analysis of the frequency of outage of a distributed MISO system demonstrated when the signal to noise ratio (SNR) is massive, the handset would maintain the prospect of an outage low enough. Assessment of the spectral range of satellite communication, in the analysis process, the criteria of the rice channel are applied to the channel, review excluding certain traits of the dual-polarized satellite MISO. The public would provide great feedback for the productivity of the future of MISO satellite technology. In a previous paper, the author designed a channel modeling dual-band for satellite communication using the MIMO technique. Using this technique, the system cannot achieve greater performance and at the same time using a dual-band will decrease the system's capability. To decrease the above issues, the paper introduces a new method called the MISO system. Using the MISO technique, the system can gain high performance and the system will get greater bandwidth, BER, and SNR. The advantage of using single-band dual-polarized is, uplink and a downlink frequency of the satellite can be calculated very easily and accurately.


2021 ◽  
pp. 228-235
Author(s):  
Sarun Duangsuwan ◽  

A challenge swarm unmanned aerial vehicles (swarm UAVs)-based wireless communication systems have been focused on channel modeling in various environments. In this paper, we present the characterized path loss air-to-air (A2A) channel modeling-based measurement and prediction model. The channel model was considered using A2A Two-Ray (A2AT-R) extended path loss modeling. The prediction model was considered using an artificial neural network (ANN) algorithm to train the measured dataset. To evaluate the measurement result, path loss models between the A2AT-R model and the prediction model are shown. We show that the prediction model using ANN is optimal to train the measured data for the A2A channel model. To discuss the result, the parametric prediction errors such as mean absolute error (MAE), root mean square error (RMSE), and R-square (R2), are performed.


2021 ◽  
Vol 2 ◽  
Author(s):  
Joan Palacios ◽  
Nuria González-Prelcic ◽  
Carlos Mosquera ◽  
Takayuki Shimizu ◽  
Chang-Heng Wang

5G and future cellular networks intend to incorporate low earth orbit (LEO) satellite communication systems (SatCom) to solve the coverage and availability problems that cannot be addressed by satellite-based or ground-based infrastructure alone. This integration of terrestrial and non terrestrial networks poses many technical challenges which need to be identified and addressed. To this aim, we design and simulate the downlink of a LEO SatCom compatible with 5G NR, with a special focus on the design of the beamforming codebook at the satellite side. The performance of this approach is evaluated for the link between a LEO satellite and a mobile terminal in the Ku band, assuming a realistic channel model and commercial antenna array designs, both at the satellite and the terminal. Simulation results provide insights on open research challenges related to analog codebook design and hybrid beamforming strategies, requirements of the antenna terminals to provide a given SNR, or required beam reconfiguration capabilities among others.


2021 ◽  
Vol 2021 ◽  
pp. 1-36
Author(s):  
Agbotiname Lucky Imoize ◽  
Augustus Ehiremen Ibhaze ◽  
Aderemi A. Atayero ◽  
K. V. N. Kavitha

The field of wireless communication networks has witnessed a dramatic change over the last decade due to sophisticated technologies deployed to satisfy various demands peculiar to different data-intensive wireless applications. Consequently, this has led to the aggressive use of the available propagation channels to fulfill the minimum quality of service (QoS) requirement. A major barometer used to gauge the performance of a wireless communication system is the spectral efficiency (SE) of its communication channels. A key technology used to improve SE substantially is the multiple input multiple output (MIMO) technique. This article presents a detailed survey of MIMO channel models in wireless communication systems. First, we present the general MIMO channel model and identified three major MIMO channel models, viz., the physical, analytical, and standardized models. The physical models describe the MIMO channel using physical parameters. The analytical models show the statistical features of the MIMO channel with respect to the measured data. The standardized models provide a unified framework for modern radio propagation architecture, advanced signal processing, and cutting-edge multiple access techniques. Additionally, we examined the strengths and limitations of the existing channel models and discussed model design, development, parameterization, implementation, and validation. Finally, we present the recent 3GPP-based 3D channel model, the transitioning from 2D to 3D channel modeling, discuss open issues, and highlight vital lessons learned for future research exploration in MIMO communication systems.


2019 ◽  
Vol 13 (4) ◽  
pp. 374-381
Author(s):  
Tao Kai ◽  
Sun Xiaoyun ◽  
Wang Yang ◽  
Jingchun Li

Background: As the multimedia service develops and the transmission rate in terrestrial communication systems increases rapidly, satellite communication needs to improve the transmission rate and throughput. Multiple Input Multiple Output (MIMO) techniques can increase the system capacity significantly by introducing the space dimension, as the system bandwidth remains the same. Therefore, utilization of MIMO for satellite communications to increase the capacity is an important research topic. So MIMO techniques for multibeam satellite communications are researched in the dissertation. Objective: The goal of this work is improving the capacity of the satellite system. Multi-beam and dual-polarized technologies are applied to a satellite system to improve the capacity further. Methods: In this paper, we first introduce a multi-beam dual-polarized satellite multi-put and multiout (MBDP-S-MIMO) system which combines the full frequency multiplexing and dual-polarization technologies. Then the system model and channel model are first constructed. At last, to improve the capacity further, BD and BD-ZF precoding algorithms are applied to MBDP-S-MIMO and their performance is verified by simulation. Results: Simulation results show the performance of the BD precoding algorithm gets better with the growth of the XPD at the receiver and is almost not affected by the growth of the channel polarization correlation coefficient. In addition, with the growth of the users’ speed, the performance becomes worse. Conclusion: The multi-beam dual-polarized satellite MIMO system has high capacity, and it has certain application prospects for satellite communication.


Author(s):  
Alireza Borhani ◽  
Matthias Pätzold

This paper proposes a non-stationary channel model in which real-time dynamics of the mobile station (MS) are taken into account. We utilize Brownian motion (BM) processes to model targeted and non-targeted dynamics of the MS. The proposed trajectory model consists of both drift and random components to capture both targeted and non-targeted motions of the MS. The Brownian trajectory model is then employed to provide a non-stationary channel model, in which the scattering effects of the propagation area are modelled by a non-centred one-ring geometric scattering model. The starting point of the motion is a fixed point in the propagation environment, whereas its terminating point is a random point along a predetermined drift. The drift component can be controlled by a so-called drift parameter. Tracking the MS on the proposed Brownian path allows us to derive the local angles-of-arrival (AOAs) and local angles-of-motion (AOMs), which are expressed by stochastic processes rather than random variables. We compute the first-order densities of the AOA and AOM processes in closed form. The local power spectral density (PSD) of the Doppler frequencies and the autocorrelation function (ACF) of the complex channel gain are also provided. Given a walking speed scenario, the analytical results are demonstrated and explained in depth. It turns out that the proposed Brownian path model results in a non-stationary non-isotropic channel model. The proposed geometry-based channel model is very useful for the performance analysis of mobile communication systems under non-stationary conditions.


Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 3271
Author(s):  
Naeem Ahmed ◽  
Boyu Hua ◽  
Qiuming Zhu ◽  
Kai Mao ◽  
Junwei Bao

A new non-stationary (NS) geometry-based stochastic model (GBSM) is presented for developing and testing the communication systems of vehicle-to-vehicle (V2V) applications, which considers the three-dimensional (3D) scattering environments and allows 3D velocity as well. In this paper, the proposed GBSM for NS V2V channels allowed 3D velocity variations and was more suitable for actual V2V communications because it provided smoother transitions between the consecutive channel segments. The time-variant channel coefficient and the channel parameters, i.e., Doppler frequencies, path delay and power, angle of arrival (AoA), and angle of departure (AoD), were analyzed and derived. Likewise, the theoretical statistical properties as the probability density function (PDF), the auto-correlation function (ACF), and Doppler power spectral density (DPSD) were also analyzed and derived under the von Mises–Fisher (VMF) distribution. Finally, the theoretical and measured results were well coordinated alongside the implemented results, which confirmed the feasibility of the introduced model along with the theoretical expressions.


Sign in / Sign up

Export Citation Format

Share Document