scholarly journals Numerical Verification of Interaction between Masonry with Precast Reinforced Lintel Made of AAC and Reinforced Concrete Confining Elements

2020 ◽  
Vol 10 (16) ◽  
pp. 5446 ◽  
Author(s):  
Łukasz Drobiec ◽  
Radosław Jasiński ◽  
Wojciech Mazur ◽  
Tomasz Rybraczyk

This paper describes results of numerical analyses of reinforced lintels made of autoclaved aerated concrete built into unconfined walls and walls confined with reinforced concrete. The combination of the Menétrey–Willam elastic-plastic failure criterion (M-W-3) and the Rankine criterion was used for numerical analysis of masonry. The parameters were determined by laboratory tests. Rebars were modelled using the Huber–Mises–Hencky yield criterion. The numerical model included interface elements att the interface between masonry units, at interfaces between reinforced concrete and masonry, and at interfaces between elements of test stands with a model using the Coulomb–Mohr (C-M) criterion. The majority of parameters of interface elements were assumed from laboratory tests. Results of numerical analysis were compared with laboratory tests. Results of numerical analysis and experiments were compatible in the range of load-carrying capacity of models and the failure method.

2015 ◽  
Vol 769 ◽  
pp. 133-138
Author(s):  
Mirosław Wieczorek

In the time of exploitation of building structures frequently situations do occur, in which due to failures they are exposed to much higher loads than originally predicted. The subject matter of the performed investigations and a numerical analysis are models of four narrow reinforced concrete slabs with the dimensions 7140×500×190 mm. The paper presents the results of the numerical analysis, the aim of which was to reflect and to provide detailed information about phenomena occurring in the course of laboratory tests. Numerical models were constructed according to the system ANSYS, applying volumetric elements SOLID65 and bars LINK8. In order to determine the relation σ-ε of steel an isotropic model of strengthening in the system ANSYS was used, constructed by Misses. The behaviour of concrete was represented by the material model Concrete. The parameters applied in the material models had been obtained in laboratory tests of the material. The paper quotes the results of calculations compared with the results obtained in laboratory tests.


2021 ◽  
Author(s):  
Andreia Romero Fanton ◽  
Luiz Carlos de Almeida ◽  
Leandro Mouta Trautwein

<p>The emergence of tensile membrane action as a key load-carrying mechanism has increased experimental and numerical studies on the fire performance of concrete slabs since 2000, however, the different behaviour due to aggregate type is less studied in slabs numerical analysis. This paper presents a numerical analysis of the thermomechanical behaviour of reinforced concrete slabs exposed to fire, using Finite Element Modelling in ATENA and GiD. Results were validated against experimental data from the literature subjecting slabs to ISO834 and hydrocarbon time- temperature curves. 3 calibration steps were done to combine mechanical and thermal behaviours. A parametric analysis was carried out with calcareous and siliceous aggregates to provide information for safer slab design and consequent fewer accidents related to fire situation. The choice of aggregate type must always be considered in design.</p>


2020 ◽  
Vol 38 (5A) ◽  
pp. 669-680
Author(s):  
Ghazwan K. Mohammed ◽  
Kaiss F. Sarsam ◽  
Ikbal N. Gorgis

The study deals with the effect of using Slurry infiltrated fiber concrete (SIFCON) with the reinforced concrete beams to explore its enhancement to the flexural capacity. The experimental work consists of the casting of six beams, two beams were fully cast by conventional concrete (CC) and SIFCON, as references. While the remaining was made by contributing a layer of SIFCON diverse in-depth and position, towards complete the overall depths of the built-up beam with conventional concrete CC. Also, an investigation was done through the control specimens testing about the mechanical properties of SIFCON. The results showed a stiffer behavior with a significant increase in load-carrying capacity when SIFCON used in tension zones. Otherwise high ductility and energy dissipation appeared when SIFCON placed in compression zones with a slight increment in ultimate load. The high volumetric ratio of steel fibers enabled SIFCON to magnificent tensile properties.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4092
Author(s):  
Kamil Bacharz ◽  
Barbara Goszczyńska

The paper reports the results of a comparative analysis of the experimental shear capacity obtained from the tests of reinforced concrete beams with various static schemes, loading modes and programs, and the shear capacity calculated using selected models. Single-span and two-span reinforced concrete beams under monotonic and cyclic loads were considered in the analysis. The computational models were selected based on their application to engineering practice, i.e., the approaches implemented in the European and US provisions. Due to the changing strength characteristics of concrete, the analysis was also focused on concrete contribution in the shear capacity of reinforced concrete beams in the cracked phase and on the angle of inclination of diagonal struts. During the laboratory tests, a modern ARAMIS digital image correlation (DIC) system was used for tracking the formation and development of diagonal cracks.


Author(s):  
Seung-Jae Lee ◽  
Tae-Sung Eom ◽  
Eunjong Yu

AbstractThis study analytically investigated the behavior of reinforced concrete frames with masonry infills. For the analysis, VecTor2, a nonlinear finite element analysis program that implements the Modified Compression Field Theory and Disturbed Stress Field Model, was used. To account for the slip behavior at the mortar joints in the masonry element, the hyperbolic Mohr–Coulomb yield criterion, defined as a function of cohesion and friction angle, was used. The analysis results showed that the lateral resistance and failure mode of the infilled frames were significantly affected by the thickness of the masonry infill, cohesion on the mortar joint–brick interface, and poor mortar filling (or gap) on the masonry boundary under the beam. Diagonal strut actions developed along two or three load paths on the mortar infill, including the backstay actions near the tension column and push-down actions near the compression columns. Such backstay and push-down actions increased the axial and shear forces of columns, and ultimately affect the strength, ductility, and failure mode of the infilled frames.


2020 ◽  
Vol 37 (7) ◽  
pp. 2517-2537
Author(s):  
Mostafa Rezvani Sharif ◽  
Seyed Mohammad Reza Sadri Tabaei Zavareh

Purpose The shear strength of reinforced concrete (RC) columns under cyclic lateral loading is a crucial concern, particularly, in the seismic design of RC structures. Considering the costly procedure of testing methods for measuring the real value of the shear strength factor and the existence of several parameters impacting the system behavior, numerical modeling techniques have been very much appreciated by engineers and researchers. This study aims to propose a new model for estimation of the shear strength of cyclically loaded circular RC columns through a robust computational intelligence approach, namely, linear genetic programming (LGP). Design/methodology/approach LGP is a data-driven self-adaptive algorithm recently used for classification, pattern recognition and numerical modeling of engineering problems. A reliable database consisting of 64 experimental data is collected for the development of shear strength LGP models here. The obtained models are evaluated from both engineering and accuracy perspectives by means of several indicators and supplementary studies and the optimal model is presented for further purposes. Additionally, the capability of LGP is examined to be used as an alternative approach for the numerical analysis of engineering problems. Findings A new predictive model is proposed for the estimation of the shear strength of cyclically loaded circular RC columns using the LGP approach. To demonstrate the capability of the proposed model, the analysis results are compared to those obtained by some well-known models recommended in the existing literature. The results confirm the potential of the LGP approach for numerical analysis of engineering problems in addition to the fact that the obtained LGP model outperforms existing models in estimation and predictability. Originality/value This paper mainly represents the capability of the LGP approach as a robust alternative approach among existing analytical and numerical methods for modeling and analysis of relevant engineering approximation and estimation problems. The authors are confident that the shear strength model proposed can be used for design and pre-design aims. The authors also declare that they have no conflict of interest.


Sign in / Sign up

Export Citation Format

Share Document