scholarly journals Building Energy an Simulation Model for Analyzing Energy Saving Options of Multi-Span Greenhouses

2020 ◽  
Vol 10 (19) ◽  
pp. 6884
Author(s):  
Adnan Rasheed ◽  
Cheul Soon Kwak ◽  
Hyeon Tae Kim ◽  
Hyun Woo Lee

This study proposes a multi-span greenhouse Building Energy Simulation (BES) model using a Transient System Simulation (TRNSYS)-18 program. A detailed BES model was developed and validated to simulate the thermal environment in the greenhouse under different design parameters for the multi-span greenhouse. Validation of the model was carried out by comparing the results from computed and experimental greenhouse internal temperatures. The statistical analyses produced an R2 value of 0.84, a root mean square error (RMSE) value of 1.8 °C, and a relative (r)RMSE value of 6.7%, showing good agreement between computed and experimental results. The validated proposed BES model was used to evaluate the effect of multi-span greenhouse design parameters including thermal screens, number of screens, orientation, covering materials, double glazing, north-wall insulation, roof geometry, and natural ventilation, on the annual energy demand of the greenhouse, subjected to Taean Gun (latitude 36.88° N, longitude 126.24° E), Chungcheongnam-do, South Korea winter and summer season weather conditions. Additionally, the proposed BES model is capable of evaluating multi-span greenhouse design parameters with daily and seasonal dynamic control of thermal and shading screens, natural ventilation, as well as heating and cooling set-points. The TRNSYS 18 program proved to be highly flexible for carrying out simulations under local weather conditions and user-defined design and control of the greenhouse. The statistical analysis of validated results should encourage the adoption of the proposed model when the underlying aim is to evaluate the design parameters of multi-span greenhouses considering local weather conditions and specific needs.

Energies ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 2001 ◽  
Author(s):  
Adnan Rasheed ◽  
Jong Lee ◽  
Hyun Lee

Energy management of the greenhouse is considered to be one of the most important challenges of greenhouse farming. Energy saving measures need considered, besides applying energy supplying techniques. To address this issue, a model was developed to simulate the thermal environment of a greenhouse using a Transient Systems Simulation Program (TRNSYS 17) as a building energy simulation (BES) platform. The model was calibrated by modifying the input parameters to minimize the uncertainties obtained from the results. Nash-Sutcliffe efficiency coefficients of 0.958 and 0.983 showed good agreement between the computed and experimental results. The proposed model was used to evaluate the effects of greenhouse design parameters, including roof shape, orientation, double-glazing, natural ventilation, coverings and their thickness, on its energy conservation capacity. It was found that the most suitable design for a greenhouse located in Daegu (latitude 35.53° N, longitude 128.36° E) South Korea would be east-west (E-W) oriented, with a gothic-shaped roof and double-glazing of PMMA (Polymethylmethacrylate) covering. Natural ventilation reduced the inside temperature of greenhouse, thereby reducing the energy demand of cooling. The model developed can help greenhouse farmers and researchers make pre-design decisions regarding greenhouse construction, taking their local environment and specific needs into consideration.


2021 ◽  
Vol 15 (2) ◽  
pp. 20-30
Author(s):  
Qudama Al-Yasiri ◽  
Márta Szabó

Cooling and air-conditioning systems are responsible for the highest energy consumption in buildings located in hot areas. This high share does not only increase the building energy demand cost but also increases the environmental impact, the topmost awareness of the modern era. The development of traditional systems and reliance on renewable technologies have increased drastically in the last century but still lacks economic concerns. Passive cooling strategies have been introduced as a successful option to mitigate the energy demand and improve energy conservation in buildings. This paper shed light on some passive strategies that could be applied to minimise building cooling loads to encourage the movement towards healthier and more energy-efficient buildings. For this purpose, seven popular passive technologies have been discussed shortly: multi-panned windows, shading devices, insulations, green roofing, phase change materials, reflective coatings, and natural ventilation using the windcatcher technique. The analysis of each strategy has shown that the building energy could be improved remarkably. Furthermore, adopting more passive strategies can significantly enhance the building thermal comfort even under severe weather conditions.


Energies ◽  
2019 ◽  
Vol 12 (13) ◽  
pp. 2496 ◽  
Author(s):  
Laura Carnieletto ◽  
Borja Badenes ◽  
Marco Belliardi ◽  
Adriana Bernardi ◽  
Samantha Graci ◽  
...  

The design of ground source heat pumps is a fundamental step to ensure the high energy efficiency of heat pump systems throughout their operating years. To enhance the diffusion of ground source heat pump systems, two different tools are developed in the H2020 research project named, “Cheap GSHPs”: A design tool and a decision support system. In both cases, the energy demand of the buildings may not be calculated by the user. The main input data, to evaluate the size of the borehole heat exchangers, is the building energy demand. This paper presents a methodology to correlate energy demand, building typologies, and climatic conditions for different types of residential buildings. Rather than envelope properties, three insulation levels have been considered in different climatic conditions to set up a database of energy profiles. Analyzing European climatic test reference years, 23 locations have been considered. For each location, the overall energy and the mean hourly monthly energy profiles for heating and cooling have been calculated. Pre-calculated profiles are needed to size generation systems and, in particular, ground source heat pumps. For this reason, correlations based on the degree days for heating and cooling demand have been found in order to generalize the results for different buildings. These correlations depend on the Köppen–Geiger climate scale.


2020 ◽  
Vol 12 (9) ◽  
pp. 3540 ◽  
Author(s):  
Yuang Guo ◽  
Dewancker Bart

According to a Chinese building energy demand report of 2016, building consumption is accelerating at a spectacular rate, especially for urban public buildings. In this study, various design parameters that meet the principle of climate adaptation are proposed to achieve the unity of energy utilization and indoor thermal comfort level. According to the local energy conservation codes, five typical benchmark geometric models were established in Open Studio (Sketch-Up plug-in) for sites representative of various climates, meanwhile, adopting the engine of Energy Plus (EP-Launch) to calculate the instrument definition file (IDF), respectively, for assessing the coupling relationship between energy consumption as well as thermal comfort. Results implied that based on the time proportion (8760 h) that met the level 1 comfort range, total energy reductions of different Chinese climate regions were different. Among them, the severe cold zone (SCZ—Changchun) and hot summer and cold winter zone (HSCW—Shanghai) appeared to have the greatest energy saving potential with 18–24% and 16–19%, respectively, while the cold zone (CZ—Beijing) and mild zone (MZ—Kunming) approximately equaled 15% and 12–15%, and the saving space of the hot summer and warm winter zone (HSWW—Haikou) appeared relatively low, only around 5–7%. Although the simulation results may be limited by the number of parameter settings, the main ones are under consideration seriously, which is further indication that there is still much room for appropriate improvements in the local public building energy efficiency codes.


2020 ◽  
Vol 172 ◽  
pp. 19002
Author(s):  
Kavan Javanroodi ◽  
Vahid M. Nik ◽  
Yuchen Yang

Designing building form in urban areas is a complicated process that demands considering a high number of influencing parameters. On the other hand, there has been an increasing trend to design highly fenestrated building envelopes for office buildings to induce higher levels of natural lighting into the workspace. This paper presents a novel optimization framework to design high-performance building form and fenestration configuration considering the impacts of urban microclimate in typical and extreme weather conditions during a thirty-year period of climate data (2010-2039). In this regard, based on the introduced technique and algorithm, the annual energy demand and thermal comfort of over 8008 eligible form combinations with eight different fenestration configurations and seven different building orientation angels were analysed in a detailed urban area to find optimal design solutions in response to microclimate conditions. Results showed that adopting the framework, annual heating, and cooling demand can be reduced by 21% and 38% while maintaining thermal comfort by taking design-based decisions at the early stages of design.


Solar Energy ◽  
2006 ◽  
Author(s):  
Lara V. Greden ◽  
Leon R. Glicksman ◽  
Gabriel Lo´pez-Betanzos

Performance uncertainty is a barrier to implementation of innovative technologies. This research investigates the potential of flexible design — one that enables future change — to improve the economic performance of a naturally ventilated building. The flexible design of the naturally ventilated building enables future installation of a mechanical cooling system by including features such as space for pipes and chillers. The benefits of the flexible design are energy savings, delay of capital costs and capability of mitigating the risk of a failed building (by installing the mechanical cooling system). To evaluate the flexible design, building energy simulation is conducted over a multi-year time period with stochastic outdoor temperature variables. One result is a probability distribution of the time when the maximum allowable indoor temperature under natural ventilation is exceeded, which may be “never.” Probability distributions are also obtained for energy savings and cost savings as compared to a mechanically cooled building. Together, these results allow decision-makers to evaluate the long-term performance risks and opportunities afforded by a flexible implementation strategy for natural ventilation. It is shown that the likelihood of future installation of mechanical cooling is most sensitive to design parameters. The impact of increased climate variability depends on the local climate. The probability of installing the mechanical system also depends on the comfort criteria. The results show that capital costs for cooling equipment are much greater than the present value of 10 years of cooling energy costs. This result motivates consideration of flexible design as opposed to hybrid cooling designs (which have immediate installation of mechanical cooling). Future work will study the impact of uncertain energy prices on investment attractiveness of naturally ventilated buildings. Other applications of the framework presented herein include replacing the building energy model with a model of another climate-dependent system, such as solar photovoltaic arrays.


Agronomy ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1236
Author(s):  
Adnan Rasheed ◽  
Cheul Soon Kwak ◽  
Wook Ho Na ◽  
Jong Won Lee ◽  
Hyeon Tae Kim ◽  
...  

In this study, we propose a building energy simulation model of a multi-span greenhouse using a transient system simulation program to simulate greenhouse microenvironments. The proposed model allows daily and seasonal control of screens, roof vents, and heating setpoints according to crop needs. The proposed model was used to investigate the effect of different thermal screens, natural ventilation, and heating setpoint controls on annual and maximum heating loads of a greenhouse. The experiments and winter season weather conditions of greenhouses in Taean Gun (latitude 36.88° N, longitude 126.24° E, elevation 45 m) Chungcheongnam-do, South Korea was used for validation of our model. Nash–Sutcliffe efficiency coefficients of 0.87 and 0.71 showed good correlation between the computed and experimental results; thus, the proposed model is appropriate for performing greenhouse thermal simulations. The results showed that the heating loads of the triple-layered screen were 70% and 40% lower than that of the single-screen and double-screen greenhouses, respectively. Moreover, the maximum heating loads without a screen and for single-, double-, and the triple-layered screens were 0.65, 0.46, 0.41, and 0.34 MJ m−2, respectively. The analysis of different screens showed that Ph-77 (shading screen) combined with Ph-super (thermal screen) had the least heating requirements. The heating setpoint analysis predicted that using the designed day- and nighttime heating control setpoints can result in 3%, 15%, 14%, 15%, and 40% less heating load than when using the fixed value temperature control for November, December, January, February, and March, respectively.


2019 ◽  
Vol 11 (9) ◽  
pp. 2519 ◽  
Author(s):  
Tsoka ◽  
Tsikaloudaki ◽  
Theodosiou

Replacing conventional pavements with the corresponding high albedo ones constitutes a well-known technique to improve outdoor thermal environment of modern cites. Since most of the existing studies assess the impact of the high albedo pavements at the pedestrian’s height and with respect to thermal comfort, this study aims to examine the effect of the application of highly reflective pavements on the heating and cooling energy needs of a building unit, located inside a dense urban area. Aiming at a higher accuracy of the energy performance simulations, an integrated computational method between ENVI-met model, Meteonorm weather data generator and Energy Plus software is established, to consider the site-specific microclimatic characteristics of the urban areas. The analysis is performed both for the design and the aged albedo values as significant changes may occur due to aging process. The analysis revealed that the application of cool materials on the ground surfaces only marginally affects the energy performance of the examined building unit, both for the design and the aged albedo value; changes on the annual heating and cooling energy demand, for both albedo scenarios did not exceed 1.5% revealing the limited potential of cool pavements regarding the improvement of the energy performance of urban building units.


2020 ◽  
Vol 10 (12) ◽  
pp. 4188 ◽  
Author(s):  
Chuan-Rui Yu ◽  
Han-Sen Guo ◽  
Qian-Cheng Wang ◽  
Rui-Dong Chang

Environmental concerns and growing energy costs raise the importance of sustainable development and energy conservation. The building sector accounts for a significant portion of total energy consumption. Passive cooling techniques provide a promising and cost-efficient solution to reducing the energy demand of buildings. Based on a typical residential case in Hong Kong, this study aims to analyze the integration of various passive cooling techniques on annual and hourly building energy demand with whole building simulation. The results indicate that infiltration and insulation improvement are effective in regard to energy conservation in buildings, while the effectiveness of variations in building orientation, increasing natural ventilation rate, and phase change materials (PCM) are less significant. The findings will be helpful in the passive house standard development in Hong Kong and contribute to the further optimization work to realize both energy efficiency and favorably built environments in residential buildings.


2016 ◽  
Vol 859 ◽  
pp. 88-92 ◽  
Author(s):  
Radu Manescu ◽  
Ioan Valentin Sita ◽  
Petru Dobra

Energy consumption awareness and reducing consumption are popular topics. Building energy consumption counts for almost a third of the global energy consumption and most of that is used for building heating and cooling. Building energy simulation tools are currently gaining attention and are used for optimizing the design for new and existing buildings. For O&M phase in existing buildings, the multiannual average weather data used in the simulation tools is not suitable for evaluating the performance of the building. In this study an existing building was modeled in EnergyPlus. Real on-site weather data was used for the dynamic simulation for the heating energy demand with the aim of comparing the measured energy consumption with the simulated one. The aim is to develop an early fault detection tool for building management.


Sign in / Sign up

Export Citation Format

Share Document