scholarly journals The Novel Quantitative Assay for Measuring the Antibiofilm Activity of Volatile Compounds (AntiBioVol)

2020 ◽  
Vol 10 (20) ◽  
pp. 7343
Author(s):  
Malwina Brożyna ◽  
Anna Żywicka ◽  
Karol Fijałkowski ◽  
Damian Gorczyca ◽  
Monika Oleksy-Wawrzyniak ◽  
...  

Herein, we present a new test, dubbed AntiBioVol, to be used for the quantitative evaluation of antibiofilm activity of volatile compounds in vitro. AntiBioVol is performed in two 24-well plates using a basic microbiological laboratory equipment. To demonstrate AntiBioVol usability, we have scrutinized the activity of volatilized eucalyptus, tea tree, thyme essential oils, and ethanol (used for method suitability testing) against biofilms of Staphylococcus aureus, Pseudomonas aeruginosa, and Candida albicans. We have also compared AntiBioVol with the standard disc volatilization method, placing a special stress on evaluating the impact of various technical parameters on the outcomes of the latter method. The obtained results indicate that AntiBioVol allows analyzing the antibiofilm activity of volatile compounds in a high number of repeats and provides semi-quantitative or quantitative results of high repeatability. In comparison to disc volatilization, AntiBioVol is a more space- and cost-effective method that allows analyzing various types of microbial aggregates. Moreover, we have indicated that the possible reasons for the discrepancies in the results obtained by means of the standard disc volatilization method may be related to various parameters of the testing dishes used (height, volume, diameter) and to various volumes of the agar medium applied. In turn, the application of a 24-well plate and a strictly defined AntiBioVol protocol provide a higher control of experimental conditions. Therefore, the application of AntiBioVol may enable an optimization of and introduction of volatile compounds to the fight against infective biofilms.

PLoS ONE ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. e0245922
Author(s):  
Faye Lanni ◽  
Neil Burton ◽  
Debbie Harris ◽  
Susan Fotheringham ◽  
Simon Clark ◽  
...  

Optimised pre-clinical models are required for TB drug development to better predict the pharmacokinetics of anti-tuberculosis (anti-TB) drugs to shorten the time taken for novel drugs and combinations to be approved for clinical trial. Microdialysis can be used to measure unbound drug concentrations in awake freely moving animals in order to describe the pharmacokinetics of drugs in the organs as a continuous sampling technique. The aim of this work was to develop and optimise the microdialysis methodology in guinea pigs to better understand the pharmacokinetics of rifampicin in the lung. In vitro experiments were performed before progressing into in vivo studies because the recovery (concentration of the drug in the tissue fluid related to that in the collected dialysate) of rifampicin was dependent on a variety of experimental conditions. Mass spectrometry of the dialysate was used to determine the impact of flow rate, perfusion fluid and the molecular weight cut-off and membrane length of probes on the recovery of rifampicin at physiologically relevant concentrations. Following determination of probe efficiency and identification of a correlation between rifampicin concentrations in the lung and skeletal muscle, experiments were conducted to measure rifampicin in the sacrospinalis of guinea pigs using microdialysis. Lung concentrations of rifampicin were estimated from the rifampicin concentrations measured in the sacrospinalis. These studies suggest the potential usefulness of the microdialysis methodology to determine drug concentrations of selected anti-TB drugs to support new TB drug development.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 168 ◽  
Author(s):  
Margherita Falavigna ◽  
Paul Stein ◽  
Gøril Flaten ◽  
Massimiliano di Cagno

Mucosal drug delivery accounts for various administration routes (i.e., oral, vaginal, ocular, pulmonary, etc.) and offers a vast surface for the permeation of drugs. However, the mucus layer which shields and lubricates all mucosal tissues can compromise drugs from reaching the epithelial site, thus affecting their absorption and therapeutic effect. Therefore, the effect of the mucus layer on drug absorption has to be evaluated early in the drug-development phase, prior to in vivo studies. For this reason, we developed a simple, cost-effective and reproducible method employing UV-visible localized spectroscopy for the assessment of the interaction between mucin and drugs with different physicochemical characteristics. The mucin–drug interaction was investigated by measuring the drug relative diffusivity (Drel) in the presence of mucin, and the method was validated by fitting experimental and mathematical data. In vitro permeability studies were also performed using the mucus-covered artificial permeation barrier (mucus–PVPA, Phospholipid Vesicle-based Permeation Assay) for comparison. The obtained results showed that the diffusion of drugs was hampered by the presence of mucin, especially at higher concentrations. This novel method proved to be suitable for the investigation on the extent of mucin–drug interaction and can be successfully used to assess the impact that the mucus layer has on drug absorption.


2004 ◽  
Vol 16 (2) ◽  
pp. 282 ◽  
Author(s):  
N. Songsasen ◽  
R. Spindler ◽  
D.E. Wildt

The current in vitro maturation system (IVM) for dog oocytes is inefficient. On the average, only 15% of ovarian oocytes complete nuclear maturation in vitro. For unknown reasons, the ability of oocytes to develop to the metaphase II stage (MII) varies markedly among bitches (Songsasen et al., 2002, Mol. Reprod. Dev. 62, 407–415). The objective of this study was to identify the cause(s) underlying these significant variations in nuclear maturation. Initially, we retrospectively analyzed data obtained during the past 3 years;; 1661 oocytes were obtained from 74 bitches where stage of reproduction for the donor was known based on ovarian morphology. Oocytes were cultured in TCM 199+0.1% polyvinyl alcohol at 38.5°C in 5% CO2 in humidified air under various experimental conditions. Analysis of variance (ANOVA) was performed to compare differences in meiotic competence of oocytes obtained at various reproductive stages and during different seasons. Stage of reproduction did not influence meiotic abilities of oocytes. Percentages of oocytes obtained during proestrus/estrus (n=468 oocytes), diestrus/metestrus (n=333), anestrus (n=331) or prepuberty (6–8 months of age, n=479) and developing to MII were 17.9±2.9%, (mean±SEM), 24.0±6.0%, 20.8±4.7%, and 17.8±5.2%, respectively (P>0.05). A similar analysis across seasons (spring, summer, fall, winter) also indicated no influence of time of year on nuclear maturation (P>0.05). Because there is a known strong link between follicular growth and meiotic competence of goat oocytes (De Smedt et al., 1994 J. Exp. Zool. 269, 128–139), we also examined the impact of follicular size on nuclear maturation. The cortex of ovaries from 15 bitches was horizontally dissected (5mm thickness) so follicles could be observed and divided into three classes: (1) <0.5mm diameter (n=60); (2) ≥0.5 to <1mm (n=110); and (3) 1–2mm (n=72). Follicles were separated according to these size classes;; oocytes were recovered and cultured in TCM 199+0.25mM pyruvate, 2mM glutamine, 25mM β-mercaptoethanol, 10ng/mL epidermal growth factor (Basal TCM) supplemented with 0.5IU/mL equine chorionic gonadotropin for 1h. Oocytes then were cultured in Basal TCM for 48h before staining with 1% orcein to assess nuclear status. Follicular size influenced meiotic competence of the oocytes (ANOVA, P<0.05). Mean percentages of MII oocytes were 14.2±7.2, 15.6±4.5, and 30.9±8.2, for oocytes recovered from <0.5-mm, ≥0.5 to <1-mm and 1–2-mm diameter follicles, respectively. This study revealed that stage of reproduction and season have no impact on in vitro nuclear maturation of the dog oocyte. However, the findings demonstrate that dog oocytes acquire meiotic competency during follicular development. Because the source of most dog oocytes for IVM are small follicles, results suggest that oocytes may be incapable of completing nuclear maturation under in vitro conditions that are designed for fully-grown oocytes.


2019 ◽  
Vol 10 ◽  
pp. 204062231986480 ◽  
Author(s):  
Hristina Kocic ◽  
Giovanni Damiani ◽  
Bojana Stamenkovic ◽  
Michael Tirant ◽  
Andrija Jovic ◽  
...  

Nutrigenomic DNA reprogramming in different chronic diseases and cancer has been assessed through the stimulation of gene expression and mRNA synthesis versus DNA silencing by CpG DNA modification (methylation); histone modification (acetylation, methylation) and expression of small noncoding RNAs, known as microRNAs (miRNAs). With regard to the specific nutrigenomic effects in psoriasis, the influence of specific diets on inflammatory cell signaling transcriptional factors such as nuclear factor (NF)-κB and Wnt signaling pathways, on disease-related specific cytokine expression, pro/antioxidant balance, keratinocyte proliferation/apoptosis and on proliferation/differentiation ratio have been documented; however, the influence of dietary compounds on the balance between ‘good and bad’ miRNA expression has not been considered. This review aims to summarize knowledge about aberrant microRNAs expression in psoriasis and to emphasize the potential impact of some dietary compounds on endogenous miRNA synthesis in experimental conditions in vivo and in vitro. Among the aberrantly expressed miRNAs in psoriasis, one of the most prominently upregulated seems to be miR-21. The beneficial effects of phenolic compounds (curcumin and resveratrol), vitamin D, methyl donors, and omega-3 fatty acids (eicosapentaenoic acid and docosahexaenoic acid) are discussed. Highly expressed miR-155 has been downregulated by flavonoids (through a quercetin-rich diet) and by vitamin D. Quercetin has been effective in modulating miR-146a. On the other hand, downregulated miR-125b expression was restored by vitamin D, Coenzyme Q10 and by microelement selenium. In conclusion, the miRNA profile, together with other ‘omics’, may constitute a multifaceted approach to explore the impact of diet on psoriasis prevention and treatment.


2020 ◽  
Vol 51 (3) ◽  
pp. 134-140
Author(s):  
Đorđe Đukanović ◽  
Milica Gajić ◽  
Ranko Škrbić

Background/Aim: There have been different experimental conditions for in vitro studies on human umbilical arteries (HUA) in tissue bath system. This diversity was mainly reflected in variables such as stretching tension, incubation period and initial constriction challenging with potassium (KCl). The aim of the study was to establish optimal experimental conditions which will provide better responsiveness of HUA preparations, as well as to examine the impact of 24 h cold storage on viability and responsiveness of HUA to KCl and serotonin. Methods: The KCl-induced constrictions at different stretching tensions (0.5 g, 1.0 g, 2.0 g, 4.0 g), incubation times (30 min, 60 min, 120 min), and after multiple initial constriction challenging were compared. Dose response curves for serotonin were obtained under different conditions (1.0 g and 60 min vs. 2.0 g and 120 min). The influence of 24 h cold storage on KCland serotonininduced vasoconstriction of HUA preparations was examined as well. Results: The strongest constrictions induced by serotonin or KCl were obtained when preparations were adjusted at 2.0 g and incubated for 120 min. The KCl-induced constrictions observed after 120 min were statistically higher (p < 0.05) when preparations were challenged three times (30 min, 60 min, 120 min), compared to those challenged only once. The preparations that were stored at 4 ⁰C for 24 h showed significantly stronger serotonin-induced constrictions (p < 0.01). The cold storage had no influence on KCl-induced constriction. Conclusion: For performing in vitro studies on HUA preparations in tissue bath, we propose stretching tension of 2.0 g, incubation period of 120 min and multiple initial constriction challenging with KCl as optimal experimental condition. We also showed that HUA preparations retained functional viability even after 24 h of cold storage.


Plants ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2185
Author(s):  
Miroslava Kačániová ◽  
Lucia Galovičová ◽  
Petra Borotová ◽  
Veronika Valková ◽  
Hana Ďúranová ◽  
...  

The essential oil of Syzygium (S.) aromaticum (CEO) is known for its good biological activity. The aim of the research was to evaluate in vitro and in situ antimicrobial and antibiofilm activity of the essential oil produced in Slovakia. The main components of CEO were eugenol 82.4% and (E)-caryophyllene 14.0%. The antimicrobial activity was either weak or very strong with inhibition zones ranging from 4.67 to 15.78 mm in gram-positive and gram-negative bacteria and from 8.22 to 18.56 mm in yeasts and fungi. Among the tested bacteria and fungi, the lowest values of MIC were determined for Staphylococcus (S.) aureus and Penicillium (P.) expansum, respectively. The vapor phase of CEO inhibited the growth of the microscopic filamentous fungi of the genus Penicillium when tested in situ on bread. The strongest effect of mycelia inhibition in a bread model was observed against P. expansum at concentrations of 250 and 500 μL/mL. The best antimicrobial activity of CEO in the carrot model was found against P. chrysosenum. Differences between the mass spectra of Bacillus (B.) subtilis biofilms on the tested surfaces (wood, glass) and the control sample were noted from the seventh day of culture. There were some changes in mass spectra of Stenotrophomonas (S.) maltophilia, which were observed in both experimental groups from the fifth day of culture. These findings confirmed the impact of CEO on the protein structure of older biofilms. The findings indicate that, besides being safe and sensorially attractive, S. aromaticum has antimicrobial activity, which makes it a potential substitute for chemical food preservatives.


2020 ◽  
Vol 367 (12) ◽  
Author(s):  
Lorenzo Nissen ◽  
Flavia Casciano ◽  
Andrea Gianotti

ABSTRACT In vitro gut fermentation models were firstly introduced in nutrition and applied microbiology research back in the 1990s. These models have improved greatly during time, mainly over the resemblance to the complexity of digestion stages, the replication of experimental conditions, the multitude of ecological parameters to assay. The state of the science is that the most competitive models shall include a complex gut microbiota, small working volumes, distinct interconnected compartments and rigorous bio-chemical and ecological settings, controlled by a computer, as well as a free-hands accessibility, not to contaminate the mock microbiota. These models are a useful tool to study the impact of a given diet compound, e.g. prebiotics, on the human gut microbiota. The principal application is to focus on the shift of the core microbial groups and selected species together with their metabolites, assaying their diversity, richness and abundance in the community over time. Besides, it is possible to study how a compound is digested, which metabolic pathways are triggered, and the type and quantity of microbial metabolites produced. Further prospective should focus on challenges with pathogens as well as on ecology of gut syndromes. In this minireview an updated presentation of the most used intestinal models is presented, basing on their concept, technical features, as well as on research applications.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1109
Author(s):  
Elham Amini ◽  
Abhinav Kurumaddali ◽  
Sharvari Bhagwat ◽  
Simon M. Berger ◽  
Günther Hochhaus

The aim of this study was to further evaluate and optimize the Transwell® system for assessing the dissolution behavior of orally inhaled drug products (OIDPs), using fluticasone propionate as a model drug. Sample preparation involved the collection of a relevant inhalable dose fraction through an anatomical mouth/throat model, resulting in a more uniform presentation of drug particles during the subsequent dissolution test. The method differed from previously published procedures by (1) using a 0.4 µm polycarbonate (PC) membrane, (2) stirring the receptor compartment, and (3) placing the drug-containing side of the filter paper face downwards, towards the PC membrane. A model developed in silico, paired with the results of in vitro studies, suggested that a dissolution medium providing a solubility of about 5 µg/mL would be a good starting point for the method’s development, resulting in mean transfer times that were about 10 times longer than those of a solution. Furthermore, the model suggested that larger donor/receptor and sampling volumes (3, 3.3 and 2 mL, respectively) will significantly reduce the so-called “mass effect”. The outcomes of this study shed further light on the impact of experimental conditions on the complex interplay of dissolution and diffusion within a volume-limited system, under non-sink conditions.


2016 ◽  
Vol 61 (1) ◽  
Author(s):  
G. Mourand ◽  
F. Paboeuf ◽  
M. A. Fleury ◽  
E. Jouy ◽  
S. Bougeard ◽  
...  

ABSTRACT Four trials were conducted to evaluate the impact of Escherichia coli probiotic strain ED1a administration to pigs on the gut carriage or survival in manure of extended-spectrum-β-lactamase-producing E. coli. Groups of pigs were orally inoculated with strain E. coli M63 carrying the bla CTX-M-1 gene (n = 84) or used as a control (n = 26). In the first two trials, 24 of 40 E. coli M63-inoculated pigs were given E. coli ED1a orally for 6 days starting 8 days after oral inoculation. In the third trial, 10 E. coli M63-inoculated pigs were given either E. coli ED1a or probiotic E. coli Nissle 1917 for 5 days. In the fourth trial, E. coli ED1a was given to a sow and its 12 piglets, and these 12 piglets plus 12 piglets that had not received E. coli ED1a were then inoculated with E. coli M63. Fecal shedding of cefotaxime-resistant Enterobacteriaceae (CTX-RE) was studied by culture, and bla CTX-M-1 genes were quantified by PCR. The persistence of CTX-RE in manure samples from inoculated pigs or manure samples inoculated in vitro with E. coli M63 with or without probiotics was studied. The results showed that E. coli M63 and ED1a were good gut colonizers. The reduction in the level of fecal excretion of CTX-RE in E. coli ED1a-treated pigs compared to that in nontreated pigs was usually less than 1 log10 CFU and was mainly observed during the probiotic administration period. The results obtained with E. coli Nissle 1917 did not differ significantly from those obtained with E. coli ED1a. CTX-RE survival did not differ significantly in manure samples with or without probiotic treatment. In conclusion, under our experimental conditions, E. coli ED1a and E. coli Nissle 1917 could not durably prevent CTX-RE colonization of the pig gut.


2015 ◽  
Vol 89 (13) ◽  
pp. 6551-6561 ◽  
Author(s):  
Frederik Graw ◽  
Danyelle N. Martin ◽  
Alan S. Perelson ◽  
Susan L. Uprichard ◽  
Harel Dahari

ABSTRACTIt has been proposed that viral cell-to-cell transmission plays a role in establishing and maintaining chronic infections. Thus, understanding the mechanisms and kinetics of cell-to-cell spread is fundamental to elucidating the dynamics of infection and may provide insight into factors that determine chronicity. Because hepatitis C virus (HCV) spreads from cell to cell and has a chronicity rate of up to 80% in exposed individuals, we examined the dynamics of HCV cell-to-cell spreadin vitroand quantified the effect of inhibiting individual host factors. Using a multidisciplinary approach, we performed HCV spread assays and assessed the appropriateness of different stochastic models for describing HCV focus expansion. To evaluate the effect of blocking specific host cell factors on HCV cell-to-cell transmission, assays were performed in the presence of blocking antibodies and/or small-molecule inhibitors targeting different cellular HCV entry factors. In all experiments, HCV-positive cells were identified by immunohistochemical staining and the number of HCV-positive cells per focus was assessed to determine focus size. We found that HCV focus expansion can best be explained by mathematical models assuming focus size-dependent growth. Consistent with previous reports suggesting that some factors impact HCV cell-to-cell spread to different extents, modeling results estimate a hierarchy of efficacies for blocking HCV cell-to-cell spread when targeting different host factors (e.g., CLDN1 > NPC1L1 > TfR1). This approach can be adapted to describe focus expansion dynamics under a variety of experimental conditions as a means to quantify cell-to-cell transmission and assess the impact of cellular factors, viral factors, and antivirals.IMPORTANCEThe ability of viruses to efficiently spread by direct cell-to-cell transmission is thought to play an important role in the establishment and maintenance of viral persistence. As such, elucidating the dynamics of cell-to-cell spread and quantifying the effect of blocking the factors involved has important implications for the design of potent antiviral strategies and controlling viral escape. Mathematical modeling has been widely used to understand HCV infection dynamics and treatment response; however, these models typically assume only cell-free virus infection mechanisms. Here, we used stochastic models describing focus expansion as a means to understand and quantify the dynamics of HCV cell-to-cell spreadin vitroand determined the degree to which cell-to-cell spread is reduced when individual HCV entry factors are blocked. The results demonstrate the ability of this approach to recapitulate and quantify cell-to-cell transmission, as well as the impact of specific factors and potential antivirals.


Sign in / Sign up

Export Citation Format

Share Document