scholarly journals Mechanical Behavior of Steel Fiber-Reinforced Lightweight Concrete Exposed to High Temperatures

2020 ◽  
Vol 11 (1) ◽  
pp. 116
Author(s):  
Huailiang Wang ◽  
Min Wei ◽  
Yuhui Wu ◽  
Jianling Huang ◽  
Huihua Chen ◽  
...  

The mechanical characteristics of steel fiber-reinforced lightweight concrete (SFLWC) under high temperatures are studied in this paper. Different concrete matrices, including all-lightweight concrete (ALWC) and semi-lightweight concrete (SLWC), and different steel fibers with hooked ends and crimped shapes are considered as objects. In addition, normal-weight limestone aggregates concrete (NWC), no-fiber ALWC, and SLWC were tested after high-temperature treatment as a control group. The temperature effects on the splitting tensile strength, ultrasonic pulse velocity, compressive stress–strain curve, elastic module, peak strain, and axial compressive strength of the SFLWC were investigated. The results showed that, with increasing exposure temperature, both the axial compressive strength and the elastic modulus decreased, while the axial peak strain has a certain increase, and hence the stress–strain curves were gradually flattened. The toughness of all the concretes increased first and then reduced with increasing temperature, while the specific toughness of all the concretes increased with the increase in temperature. Compared with NWC and SLWC, ALWC had a better capacity to resist high temperatures, especially temperatures > 400 °C. Adding steel fibers can improve the capacity of energy absorption, specific toughness, and residual splitting tensile strength of lightweight concrete (LWC) before and after it is exposed to high temperatures. Based on a regression analysis, a segmented constitutive equation for LWC and SFLWC under uniaxial compression was derived from fitting the experimental findings, and the fitting curve agrees well with the test results.

2010 ◽  
Vol 34-35 ◽  
pp. 1441-1444 ◽  
Author(s):  
Ju Zhang ◽  
Chang Wang Yan ◽  
Jin Qing Jia

This paper investigates the compressive strength and splitting tensile strength of ultra high strength concrete containing steel fiber. The steel fibers were added at the volume fractions of 0%, 0.5%, 0.75%, 1.0% and 1.5%. The compressive strength of the steel fiber reinforced ultra high strength concrete (SFRC) reached a maximum at 0.75% volume fraction, being a 15.5% improvement over the UHSC. The splitting tensile strength of the SFRC improved with increasing the volume fraction, achieving 91.9% improvements at 1.5% volume fraction. Strength models were established to predict the compressive and splitting tensile strengths of the SFRC. The models give predictions matching the measurements. Conclusions can be drawn that the marked brittleness with low tensile strength and strain capacities of ultra high strength concrete (UHSC) can be overcome by the addition of steel fibers.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Slamet Widodo ◽  
Iman Satyarno ◽  
Sri Tudjono

Lightweight concrete application in construction field is growing rapidly in these recent years due to its advantages over ordinary concrete. In this paper, pumice breccia which can be found abundantly in Indonesia is proposed to be utilized as the coarse aggregate. In spite of its benefits, lightweight concrete exhibits more brittle characteristics and lower tensile strength compared with normal concrete. On the other hand, fiber addition into concrete has become widely used to improve its tensile properties. Furthermore, the utilization of hybrid fiber in a suitable combination may potentially improve the mechanical properties of concrete. This paper experimentally examines the effects of hybrid polypropylene-steel fiber addition on some hardened properties of pumice breccia aggregate lightweight concrete. Five groups of test specimens with fixed volume fraction of polypropylene fiber combined with different amounts of steel fiber were added in concrete to investigate the density, compressive strength, modulus of elasticity, splitting tensile strength, and the modulus of rupture of the concrete mixtures. Test results indicate that hybrid fiber addition leads to significant improvement to the compressive strength, modulus of elasticity, splitting tensile strength, and the modulus of rupture of the pumice breccia lightweight aggregate concrete and meet the specification for structural purposes.


2011 ◽  
Vol 477 ◽  
pp. 274-279 ◽  
Author(s):  
Yi Xu ◽  
Lin Hua Jiang ◽  
Hong Qiang Chu ◽  
Lei Chen

In this study, the effects of fiber types on the mechanical properties of lightweight aggregate concretes were investigated. Three types of fibers, namely, polypropylene fiber, steel fiber and water hyacinth (Eichhornia crassipes) fiber, and two types of lightweight aggregates, namely, expanded polystyrene and ceramsite were used. The compressive strength and splitting tensile strength of concretes were tested. The results show that both the compressive strength and the splitting tensile strength were improved by adding a reasonable volume of steel fiber and polypropylene fiber into LWAC. The addition of water hyacinth fiber had little effect on the compressive strength of LWAC, while a little increase was observed in the splitting tensile strength.


2014 ◽  
Vol 1065-1069 ◽  
pp. 1985-1989
Author(s):  
Jia Bin Wang ◽  
Di Tao Niu ◽  
Rui Ma ◽  
Ze Long Mi

In order to investigate the carbonation resistance of shotcrete and the mechanical properties after carbonation, the accelerated carbonation test was carried out. The results indicate that the carbonation resistance of shotcrete is superior to that of normal concrete. With the increasing of carbonation depth, compressive strength and splitting tensile strength of shotcrete grew rapidly. The admixing of steel fiber can further improve the carbonation resistance, reduce the carbonation rate, and increase the splitting tensile strength of shotcrete greatly. Besides, based on analyzing the effects of construction technology and steel fiber of concrete for the carbonation resistance, a carbonation depth model for shotcrete was established. Key words: shotcrete; carbonation; steel fiber; mechanical properties


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
E. Rabiaa ◽  
R. A. S. Mohamed ◽  
W. H. Sofi ◽  
Taher A. Tawfik

This research investigates the simultaneous impact of two different types of steel fibers, nanometakaolin, and nanosilica on the mechanical properties of geopolymer concrete (GPC) mixes. To achieve this aim, different geopolymer concrete mixes were prepared. Firstly, with and without nanomaterials (nanosilica and nanometakaolin) of 0, 2%, 4%, 6%, and 8% from ground granulated blast furnace slag (GGBFS) were used. Secondly, steel fiber (hooked end and crimped) content of (0, 0.5%, 1, and 1.5%) was used. Thirdly, optimum values of nanomaterials with the optimum values of steel fiber were used. Crimped and hooked-end steel fibers were utilized with an aspect ratio of 60 and a length of 30 mm. Geopolymer mixes were manufactured by using a constant percentage of alkaline activator to binder proportion equal to 0.45 with GGBFS cured at ambient conditions. For alkaline activator, sodium hydroxide molar (NaOH) and sodium hydroxide solution (NaOH) were used according to a proportion (Na2SiO3/NaOH) of 2.33. The hardened concrete tests were performed through the usage of splitting tensile strength, flexural, and compressive experiments to determine the impact of steel fibers, nanometakaolin, and nanosilica individually and combined on performance of GPC specimens. The results illustrated that using a mix composed of the optimum steel fibers (1% content) accompanied by an optimum percentage of 6% nanometakaolin or 4% nanosilica demonstrated a significant enhancement in the mechanical properties of GPC specimens compared to all other mixtures. Besides, the impact of using nanomaterials individually was found to be predominant on compressive strength on GPC specimens especially with the usage of the optimum values. However, using nanomaterials individually compared to using the steel fibers individually was found to have approximately the same splitting tensile strength and flexural performance.


2014 ◽  
Vol 906 ◽  
pp. 329-334
Author(s):  
Yu Ting Zhu ◽  
Dong Tao Xia ◽  
Bo Ru Zhou

In this paper, according to the national standard and testing methods,the direct tension strength,splitting tensile strength and cubic compressive strength test were carried out for 8 different groups of hybrid fiber (containing steel fiber, macro-polypropylene fiber and dura fiber) reinforced HPC specimens.The results showed that when the volume proportion of ternary hybrid fiber was less than 1%, there was not obvious influence for the concrete compressive strength, but the splitting tensile strength increased by 26% ~ 69%; the ratio between splitting tensile strength and compressive strength for HFRC increased to 1/12~1/9. When added 0.7% steel fiber, 0.19% macro-polypropylene fiber and 0.11% dura fiber, the confounding effect was the best. Based on the advantages and disadvantages of tensile splitting strength and direct tensile strength test and the results of tests, the concept of equivalent tensile strength and calculative formula was put forward .


Author(s):  
Asfaw Mekonnen LAKEW ◽  
Mukhallad M. AL-MASHHADANI ◽  
Orhan CANPOLAT

This experimental work evaluated geopolymer concrete containing fly ash and slag by partial replacement of natural coarse aggregate (NCA) with recycled coarse aggregate (RCA) to manufacture environmental-friendly concrete. The proportion of recycled aggregates considered consists of 10%, 20%, 30%, and 40% of the total coarse aggregate amount. Also, a steel fiber ratio of 0.3% was utilized. The mechanical properties and abrasion resistance of fly ash/slag-based geopolymer concrete were then assessed. Majorly, the mechanical strength of the concrete samples decreased by the increase of RCA content. The geopolymer concrete with 40% RCA gave 28.3% lesser compressive strength and 24% lower splitting tensile strength than NCA concrete at one year. Also, the flexural strength of concrete specimens was reduced by 35% (from 5.34MPa to 3.5MPa) with the incorporation of 40% RCA. The incorporation of 30% RCA caused 23% and 22.6% reduction in compressive strength at 56 days and one year, respectively. The flexural and splitting tensile strength of the specimens was not significantly reduced (less than 10%) with the inclusion of a recycled coarse aggregate ratio of up to 30%. Furthermore, the abrasion wear thickness of every concrete sample was less than 1mm. RCA inclusion of 20% produced either insignificant reduction or better strength results compared to reference mixtures. As a result, it was considered that the combination of 0.3% steel fiber and 20% recycled coarse aggregate in fly ash/slag-based geopolymer concrete leads to an eco-friendly concrete mix with acceptable short and long-term engineering properties that would lead to sustainability in concrete production and utilization sector.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Danying Gao ◽  
Tao Zhang ◽  
Yihong Wang ◽  
Yiming Kong ◽  
Dawei Li ◽  
...  

The disposal of waste tire rubber has gained more attention from the viewpoint of green, environmental protection, and sustainability. Numerous attempts have been stated on the properties of crumb rubber concrete (CRC) and observed that there is a large reduction of compressive strength and elastic modulus of CRC with the increase of the rubber substitution rate. Based on the CRC with the crumb rubber volume content of 5%, the steel fibers and nanosilica were added to CRC to make steel fiber-and-nanosilica-reinforced crumb rubber concrete (SFNS-CRC) in this paper. The effects of the steel fiber volume content and nanosilica content on the compressive properties of SFNS-CRC were studied, including compressive strength, elastic modulus, peak strain, compression toughness, and failure pattern. The test results indicated that the modulus of elasticity and compressive strength of SFNS-CRC have the increasing tendency with the addition of steel fibers and nanosilica. Moreover, the peak strains have a significant increase with the increase of the steel fiber content and nanosilica replacement ratio. The compressive stress-strain curves of SFNS-CRC gradually plump with the increase of the steel fibers and nanosilica. Finally, the prediction formulas for the compressive strength, elastic modulus, and peak strain of SFNS-CRC were set up. A simple predicted model of the stress-strain curve for SFNS-CRC was proposed, which considers the effect of steel fibers and nanosilica.


2018 ◽  
Vol 7 (4.5) ◽  
pp. 262
Author(s):  
Shelorkar A.P ◽  
Jadhao P.D

This paper reports on a wide-ranging study on the properties of slurry infiltrated fiber concrete containing fly ash, Metakaolin, and hook ended steel fibers. Properties studied include workability of fresh slurry infiltrated fiber concrete, and compressive strength, flexural tensile strength, splitting tensile strength, dynamic elasticity modulus, impact energy of hardened slurry infiltrated fiber concrete. Fly ash and Metakaolin content used was 0%, 2.5%, 5.0%, 7.5% and 10% in mass basis, and hook ended steel fibers volume fraction was 0%, 2.0%, 3.0% and 4.0% in volume basis. The laboratory results showed that steel fiber addition, either into control concrete or fly ash, Metakaolin blend slurry infiltrated fiber concrete; improve the tensile strength properties, flexural strength, impact energy and modulus of elasticity. In this experimental study, compressive strength improvement ratio is 33.60%, and Structural efficiency is 9.50 % higher in slurry infiltrated fiber-concrete with Metakaolin as compared with fly ash based slurry infiltrated fiber concrete at the 4% replacement ratio of hook ended steel fibers by volume.  


Sign in / Sign up

Export Citation Format

Share Document