scholarly journals The Impact of Antimicrobial Substances on the Methanogenic Community during Methane Fermentation of Sewage Sludge and Cattle Slurry

2021 ◽  
Vol 11 (1) ◽  
pp. 369
Author(s):  
Izabela Koniuszewska ◽  
Małgorzata Czatzkowska ◽  
Monika Harnisz ◽  
Ewa Korzeniewska

This study showed the effect of amoxicillin (AMO), and oxytetracycline (OXY) at a concentration of 512 µg mL−1, and sulfamethoxazole (SMX), and metronidazole (MET) at a concentration of 1024 µg mL−1 on the efficiency of anaerobic digestion (AD) of sewage sludge (SS) and cattle slurry (CS). The production of biogas and methane (CH4) content, and the concentration of volatile fatty acids (VFAs) was analyzed in this study. Other determinations included the concentration of the mcrA gene, which catalyzes the methanogenesis, and analysis of MSC and MST gene concentration, characteristic of the families Methanosarcinaceae and Methanosaetaceae (Archaea). Both substrates differed in the composition of microbial communities, and in the sensitivity of these microorganisms to particular antimicrobial substances. Metronidazole inhibited SS fermentation to the greatest extent (sixfold decrease in biogas production and over 50% decrease in the content of CH4). The lowest concentrations of the mcrA gene (106 gD−1) were observed in CS and SS digestates with MET. A decline in the number of copies of the MSC and MST genes was noted in most of the digestate samples with antimicrobials supplementation. Due to selective pressure, antimicrobials led to a considerably lowered efficiency of the AD process and induced changes in the structure of methanogenic biodiversity.

Water ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 2127 ◽  
Author(s):  
Iwona Zawieja ◽  
Renata Włodarczyk ◽  
Mariusz Kowalczyk

The article presents an analysis of the possibilities of biogas production in the process of methane fermentation of sonicated excess sludge. The greater the percentage of methane in biogas, the higher its calorific value. In order to increase the intensity of biogas production containing approximately 70% of methane, sewage sludge is disintegrated. In particular, excess sludge formed as a result of advanced wastewater treatment by the activated sludge method shows low biodegradability. The study aim was to examine the effect of the ultrasonic field disintegration of excess sludge on biogas production. As a result of subjecting the sludge to disintegration by ultrasonic field, there was an increase in the digestion degree of sewage sludge. In the methane fermentation process of modified sludge, an increase of the biogas yield was noted, which confirmed the supportive action of ultrasonic field on the excess sludge biodegradation. In the case of disintegration of excess sludge by ultrasonic field, for the ultrasonic field intensity value of 4.3 W cm−2 and a sonication time equal to 300 s, the highest values of soluble chemical oxygen demand (SCOD), total organic carbon (TOC), and volatile fatty acids (VFAs) concentrations were obtained. In the process of conventional methane fermentation, biogas yield value was 0.303 L g VSS−1, while in the process of methane fermentation of sonicated excess sludge, the value 0.645 L g VSS−1.


2012 ◽  
Vol 531 ◽  
pp. 528-531 ◽  
Author(s):  
Na Wei

Anaerobic digestion is an economic and environmentally friendly technology for treating the biomass material-sewage sludge, but has some limitations, such as the low efficient biogass production. In this paper ultrasound was proposed as pre-treatment for effective sludge anaerobic digestion. Sludge anaerobic digestion experiments with ultrasonic pretreatment was investigated. It can be seen that this treatment effectively leaded to the increase of soluble chemical oxygen demand(SCOD) and volatile fatty acids(VFA)concentration. High concentration of VFA leaded to a increase in biogas production. Besides, the SV of sludge was reduced and the settling characteristics of sludge was improved after ultrasonic pretreatment. It can be concluded that sludge anaerobic digestion with ultrasonic pretreatment is an effective method for biomass material transformation.


2020 ◽  
Vol 10 (8) ◽  
pp. 2921 ◽  
Author(s):  
Mohsen Parchami ◽  
Steven Wainaina ◽  
Amir Mahboubi ◽  
David I’Ons ◽  
Mohammad J. Taherzadeh

The significant amount of excess sewage sludge (ESS) generated on a daily basis by wastewater treatment plants (WWTPs) is mainly subjected to biogas production, as for other organic waste streams such as food waste slurry (FWS). However, these organic wastes can be further valorized by production of volatile fatty acids (VFAs) that have various applications such as the application as an external carbon source for the denitrification stage at a WWTP. In this study, an immersed membrane bioreactor set-up was proposed for the stable production and in situ recovery of clarified VFAs from ESS and FWS. The VFAs yields from ESS and FWS reached 0.38 and 0.34 gVFA/gVSadded, respectively, during a three-month operation period without pH control. The average flux during the stable VFAs production phase with the ESS was 5.53 L/m2/h while 16.18 L/m2/h was attained with FWS. Moreover, minimal flux deterioration was observed even during operation at maximum suspended solids concentration of 32 g/L, implying that the membrane bioreactors could potentially guarantee the required volumetric productivities. In addition, the techno-economic assessment of retrofitting the membrane-assisted VFAs production process in an actual WWTP estimated savings of up to 140 €/h for replacing 300 kg/h of methanol with VFAs.


2021 ◽  
Vol 83 (8) ◽  
pp. 1920-1931
Author(s):  
M. J. Moya-Llamas ◽  
A. Trapote ◽  
D. Prats

Abstract An Upflow Anaerobic Sludge Blanket reactor combined with a two-stage membrane bioreactor were operated for 193 days in order to evaluate the biological removal of carbamazepine (CBZ) from low-strength municipal wastewater. The system worked in three different organic load stages (0.7 ± 0.1 kg COD·m−3·d−1, 0.4 ± 0.1 kg COD·m−3·d−1 and 0.1 ± 0.0 kg COD·m−3·d−1) to assess the impact of the influent OLR on operational parameters such as anaerobic and aerobic sludge retention time (SRT), acidity, volatile fatty acids (VFAs), biomass activity or biogas production. The highest carbamazepine removals were achieved during the anaerobic stage (UASB reactor), reaching averages of 48.9%, 48.0% and 38.2% operating at high, medium and low OLR, respectively. The aerobic treatment (MBR) served as post-treatment, improving the removals, and the global UASB-MBR system reached averages of 70.0%, 59.6% and 49.8% when the influent was at medium and low OLR, respectively. The results demonstrate the potential of combined biological systems on the removal of recalcitrant pharmaceuticals.


Energies ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 150
Author(s):  
Joanna Kazimierowicz ◽  
Izabela Bartkowska ◽  
Maria Walery

This study aimed to determine the effect of the low-temperature conditioning of excess dairy sewage sludge using solidified carbon dioxide on the efficiency of methane fermentation. An increase in the solidified carbon dioxide to excess dairy sewage sludge volumetric ratio above 0.3 had no significant effect on chemical oxygen demand concentration in the dissolved phase. The highest chemical oxygen demand values, ranging from 490.6 ± 12.9 to 510.5 ± 28.5 mg·dm−3, were determined at solidified carbon dioxide to excess dairy sewage sludge ratio ranging from 0.3 to 0.5. The low-temperature conditioning caused ammonia nitrogen concentration to increase from 155.2 ± 10.2 to 185.9 ± 11.1 mg·dm−3 and orthophosphates concentration to increase from 198.5 ± 23.1 to 300.6 ± 35.9 mg·dm−3 in the dissolved phase. The highest unitary amount of biogas, reaching 630.2 ± 45.5 cm3·g o.d.m.−1, was produced in the variant with the solidified carbon dioxide to excess dairy sewage sludge volumetric ratio of 0.3. Methane content of the biogas produced was at 68.7 ± 1.5%. Increased solidified carbon dioxide dose did not lead to any significant changes in biogas and methane production. The efficiency of biogas production from unconditioned excess dairy sewage sludge was lower by 43.0 ± 3.2%. The analysis demonstrated that the low-temperature conditioning is an energetic viable technology aiding the methane fermentation process.


2017 ◽  
Vol 9 (4) ◽  
pp. 371-375 ◽  
Author(s):  
Vitalij Kolodynskij ◽  
Pranas Baltrėnas

Biogas – ecological fuel, which is assigned to alternative energy sources. It should be noted, that biogas – renewable energy source, which does not require any specific climatic conditions or geographical position of a country. This power source is available and can be successfully produced and used in all countries of the world. The main components of biogas – methane CH4 and carbon monoxide CO2. This gas is formed under anaerobic conditions, when microorganisms decompose biodegradable biomass. In biological sciences biomass means a living matter content, expressed in grams per unit area. Meanwhile, in the energy sector, the definition of biomass is limited and biomass is characterized as fuel source, produced from plant materials and organic waste (food waste, wood, sludge, manure, vegetables, etc.). Currently, to produce biogas from biomass, bioreactors are used worldwide. However, in order to increase the quality and yield of biogas, in the world practice various bioload additives are used: vegetable waste, clay minerals, and a large amount of the protein-containing waste. The goal – to evaluate the impact of biochar on biogas quality and yield using sewage sludge load. It was found, that 10% biochar additive increased average CH4 concentration of 7.9%, reduced the CO2 concentration of 3–4% and totally removed H2S from biogas.


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3434
Author(s):  
Iwona Zawieja ◽  
Małgorzata Worwąg

Human functioning related to living and economic activity involves generating an increasing amount of sewage and sludge, which needs to be subjected to advanced processes of treatment, neutralization, and management. The deterioration in the susceptibility of excess sludge to biochemical decomposition observed under anaerobic conditions leads to the development and application of highly effective methods of wastewater treatment based on the removal of biogenic compounds using activated sludge, with a high degree of sludge thickening obtained in mechanical facilities. The concentration of volatile fatty acids, being an important intermediate product of anaerobic stabilization, directly determines biogas production efficiency. This study aimed to determine the effect of chemical disintegration with peracetic acid on biogas production efficiency using methane fermentation of pretreated sludge. Intensification of the hydrolysis phase is an important determinant of the efficiency of biochemical sludge decomposition under anaerobic conditions. The association of excess sludge oxidation, initiated by peracetic acid with biological hydrolysis, which is the first phase of methane fermentation, led to an increase in sludge digestion degree and biogas production efficiency. The compound of STERIDIAL W-10, which is an aqueous solution of 10% peracetic acid, 10% acetic acid, and 8% hydrogen peroxide, was used. The disintegration of excess sludge with a reactant dose of 3.0 mL of STERIDIAL W-10/L yielded a specific biogas production of 0.52 L/g VSS and a 74% degree of sludge digestion.


2016 ◽  
Vol 22 (3) ◽  
pp. 167-179 ◽  
Author(s):  
Małgorzata Worwąg

Abstract The aim of the study was to evaluate the effect of using biopreparations on efficiency of the co-fermentation process. Commercial bacterial biopreparations DBC Plus Type L, DBC Plus Type R5 and yeast biopreparations were used in the study. The process of cofermentation of sewage sludge with grease trap waste from a production plant that manufactured methyl esters of fatty acids was analysed in the laboratory environment under mesophilic conditions. The sludge in the reactor was replaced once a day, with hydraulic retention time of 10 days. Grease trap waste accounted for 35%wt. of the fermentation mixture. The stabilization process was monitored everyday based on the measurements of biogas volume. Addition of yeast biopreparation to methane fermentation of sewage sludge with grease trap waste caused an increase in mean daily biogas production from 6.9 dm3 (control mixture) to 9.21dm3 (mixture M3). No differences in biogas production were found for other cases (mixtures M1, M2). A similar relationship was observed for methane content in biogas.


Energies ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 3246 ◽  
Author(s):  
Agnieszka A. Pilarska ◽  
Agnieszka Wolna-Maruwka ◽  
Krzysztof Pilarski

The objective of this study was to verify the effect of kraft lignin as a microbial carrier on biogas/methane yield. An anaerobic co-digestion test process was carried out, in which confectionery waste was used with sewage sludge. At the first stage of the study pure lignin and lignin combined with polyvinylpyrrolidone (PVP) were subjected to an extensive physicochemical analysis. Their morphology, dispersion and adsorption properties were determined. The two materials were also subjected to thermal, spectroscopic and elementary analysis. The anaerobic digestion of the two substrates was carried out with and without the addition of the carrier, under mesophilic conditions and in periodic operation. The monitoring and analysis of the two essential parameters, i.e., pH and volatile fatty acids/total alkalinity (VFA/TA) ratio, revealed that the process was stable in both tests. Microbial and biochemical analyses showed intensified proliferation of eubacteria and increased dehydrogenase activity in samples prepared with the lignin + PVP material. The cell count increased by 46% in the stuffed wafers (WAF) + sewage sludge (SS) variant with the carrier, whereas the enzyme activity increased by 43%. Cell immobilisation noticeably improved the process efficiency. The biogas production increased from 722 m3 Mg−1 VS to 850 m3 Mg−1 VS (VS – volatile solids), whereas the methane production increased from 428 m3 Mg−1 VS to 503 m3 Mg−1 VS (by about 18%). The research proved that lignin could be used as a very effective microbial carrier in anaerobic digestion (AD).


Sign in / Sign up

Export Citation Format

Share Document