scholarly journals Optimization Study on Longitudinal Joints in Quasi-Rectangular Shield Tunnels

2021 ◽  
Vol 11 (2) ◽  
pp. 573
Author(s):  
Weixi Zhang ◽  
Wouter De Corte ◽  
Xian Liu ◽  
Luc Taerwe

There are large bending moments in quasi-rectangular shield tunnels due to their deviation from the circular shape, and as for other types of shield tunnels, the longitudinal joints are the most critical parts in the lining structure. A new type of joint with ductile iron joint panels (DIJPs) was installed in quasi-rectangular tunnels to solve these problems. The distance from the bolts to the segment’s inner surface was improved for better performance under specific bending moment types. Both tests and finite element modeling (FEM) simulations were conducted to investigate the effect of the bolt position improvements. The resistances to crack appearance increased by 33.6% and 18.0% for positive and negative moment cases, respectively. The resistances to crack penetration increased by 13.8% and 18.4% for positive and negative cases. From the FEM approach, it was found that the behavior of the joint under the design bending moment range can be divided into three stages, whereby the bolts are only active from the second stage on. The effects of other optimizing methods, such as enhancement of concrete properties and increase of bolt diameters and numbers, are explored. Through comparison, it is believed that optimizing the joint section to increase the lever arm between bolts and the compression zone can improve the joint behavior most effectively. This optimization direction is recommended when designing a shield tunnel joint with DIJPs.

2021 ◽  
Vol 2021 ◽  
pp. 1-21
Author(s):  
Yufeng Shi ◽  
Zhaoyang Chen ◽  
Duqiang Wei ◽  
Tao Zhang ◽  
Xuming Zhou ◽  
...  

The existence of cavities behind the shield tunnel lining can cause cracking, broken pieces, water leakage, and other problems, which reduces the durability and safety of the shield tunnel segment structure. In order to clarify the mechanism of cavity damage, a more systematic study of the effects of cavities on the shield tunnel lining structure from the angle, depth, and the number of cavities is carried out using model tests and numerical simulations without considering the effects of the stiffness reduction effect at the tunnel segment joints and groundwater seepage in this paper. The findings show that the bending moment value and the cavity angle value are approximately linear with the increase of single cavity angle, and the bending moment at the vault arch is reversed when the angle of the cavity behind the arch is greater than 30°. With the increase of single cavity depth, the axial force and bending moment at the cavity increase, and the distribution of bending moment remains unchanged, and the bending moment tends to be stable and unchanged beyond a certain depth. With the increase of single cavity angle and depth, the structural safety coefficient of the segment decreases, and the degree of influence is angle value > depth value. The existence of multiple cavities intensifies the influence of each cavity on the segment, especially when there are cavities behind the top and bottom of the vault; the bending moment value of the top of the vault increases by 22.53% compared with that of the single cavity condition.


Author(s):  
Ming Zhang ◽  
Yanyao Jiang ◽  
Chu-Hwa Lee

A three-dimensional finite element (FE) model with the consideration of the helix angle of the threads was developed to simulate the second stage self-loosening of a bolted joint. The second stage self-loosening refers to the graduate reduction in clamping force due to the back-off of the nut. The simulations were conducted for two plates jointed by a bolt and a nut and the joint was subjected to transverse or shear loading. An M12×1.75 bolt was used. The application of the preload was simulated by using an orthogonal temperature expansion method. FE simulations were conducted for several loading conditions with different preloads and relative displacements between the two clamped plates. It was found that due to the application of the cyclic transverse load, micro-slip occurred between the contacting surfaces of the engaged threads of the bolt and the nut. In addition, a cyclic bending moment was introduced on the bolted joint. The cyclic bending moment resulted in an oscillation of the contact pressure on the contacting surfaces of the engaged threads. The micro-slip between the engaged threads and the variation of the contact pressure were identified to be the major mechanisms responsible for the self-loosening of a bolted joint. Simplified finite element models were developed that confirmed the mechanisms discovered. The major self-loosening behavior of a bolted joint can be properly reproduced with the FE model developed. The results obtained agree quantitatively with the experimental observations.


1975 ◽  
Vol 2 (1) ◽  
pp. 98-115
Author(s):  
A. E. Long ◽  
K. Van Dalen ◽  
P. Csagoly

The fatigue behavior of the negative moment region of continuous steel–concrete composite beams under Canadian temperature conditions was studied. Tests were conducted on three 26 ft 0 in. (7.92 m) long beams, continuous over a central support, and on 11 conventional push-out specimens. These were supplemented by a theoretical study of the internal forces in the beams using an iterative method of analysis.The close agreement between measured and theoretical strains and deflections indicated that good interaction was achieved throughout the length of the beams. The beams sustained 500 000 cycles of loading with no serious deterioration of composite action. The pattern of stud failures was consistent from beam to beam and reflected closely the calculated distribution of horizontal shear force at the steel–concrete interface. Stud shear connectors in the negative moment region where the slab had cracked in tension were found to be slightly less effective than studs in the positive bending moment regions.Neither the detailed study of individual connectors in the beams nor the results of the push-out tests show evidence of a reduction in the fatigue life of studs at −20 °F (−29 °C) relative to room temperature. The beams also exhibited no significant difference in their overall performance at these two temperatures.


2019 ◽  
Vol 295 ◽  
pp. 03008
Author(s):  
Rim Trad ◽  
Hussein Mroueh ◽  
Hanbing Bian ◽  
Fabrice Cormery

This paper presents a numerical study that aims to compare the behavior of the segmental tunnel lining using the direct, indirect and experimental methods. This model is based on a practical case applied in university of Tongji: a project of water conveyance tunnel. A reduction in the bending moment and increasing of the displacement in the tunnel lining is showed in numerical results, when taking into account the effect of the joints. It has been shown that the number of joints in the tunnel-lining structure highly affects the results in terms internal forces and displacements. Furthermore, the internal forces obtained by the continuous method are high compared to the other methods when the effects on segmental joints on tunnel lining behaviour are usually considered. Additionally, the bending moment of the direct method with behaviour of rotation spring linear and experimental method is comparable.


2020 ◽  
Vol 10 (4) ◽  
pp. 1335 ◽  
Author(s):  
Shuwen Deng ◽  
Xudong Shao ◽  
Banfu Yan ◽  
Yan Wang ◽  
Huihui Li

Joints are always the focus of the precast structure for accelerated bridge construction. In this paper, a girder-to-girder joint suitable for steel-ultra-high-performance concrete (UHPC) lightweight composite bridge (LWCB) is proposed. Two flexural tests were conducted to verify the effectiveness of the proposed T-shaped girder-to-girder joint. The test results indicated that: (1) The T-shaped joint has a better cracking resistance than the traditional I-shaped joint; (2) The weak interfaces of the T-shaped joint are set in the areas with relatively lower negative bending moment, and thus the cracking risk could be decreased drastically; (3) The natural curing scheme for the joint is feasible, and the reinforcement has a very large inhibitory effect on the UHPC material shrinkage; The joint interface is the weak region of the LWCB, which requires careful consideration in future designs. Based on the experimental test results, the design and calculation methods for the deflection, crack width, and ultimate flexural capacity in the negative moment region of LWCB were presented.


2008 ◽  
Vol 400-402 ◽  
pp. 287-293
Author(s):  
Li Zhong Jiang ◽  
Lin Lin Sun ◽  
Xing Li

Based on the theoretical analysis of steel-concrete composite П-beam’s lateral buckling, the computing model and simplified computing model on the stability of composite П-beams are brought forward. According to above two models, composite beam’s lateral buckling is studied in negative moment regions using the energy method, and the formulas which are used to calculate critical bending moment in negative moment regions in the elastic stage are deduced. Compared with other stability theories and methods, this paper represents the design correction and suggestion about the stability of composite П-beam in negative bending regions. Moreover, the simplified calculation method, which is used to compute the lateral critical buckling moment of steel-concrete composite П-beam loaded by equal-end moment, not only simplifies the computing process, the computing results also have the equivalent accuracy with numerical computing methods.


Author(s):  
Emine Celik ◽  
Joseph Katz ◽  
David M. Van Wie

There are several obstacles encountered during combustion in Supersonic Combustion Ramjet (SCRAMJET) engines such as mixing, ignition, and flame holding. In order to overcome these difficulties, a new type of fuel is generated with the use of combination of two methods namely an effervescent (barbotage) and thermal pyrolysis of the fuel. In the first step of the process, during effervescent method, small gas bubbles are introduced into liquid fuel to improve the spraying characteristics of the fuel. At the second stage, long-chain hydrocarbons are broken down into short-chain hydrocarbons that burn faster. An experimental facility has been designed and developed to study the underlying physics in each process.


Sign in / Sign up

Export Citation Format

Share Document