scholarly journals Phytotoxic Activity and Growth Inhibitory Substances from Albizia richardiana (Voigt.) King & Prain

2021 ◽  
Vol 11 (4) ◽  
pp. 1455
Author(s):  
Kawsar Hossen ◽  
Arihiro Iwasaki ◽  
Kiyotake Suenaga ◽  
Hisashi Kato-Noguchi

Albizia richardiana, a fast-growing, large deciduous tree belonging to the Fabaceae family, grows well in hot and humid areas but mainly grows in the tropics of the Old World. The medicinal and other uses of Albizia richardiana are well documented, but the phytotoxic effects of this tree have not yet been investigated. We conducted this study to investigate the phytotoxic activity of Albizia richardiana leaves and to identify growth inhibitory substances for controlling weeds in a sustainable way. Aqueous methanol extracts of Albizia richardiana leaves greatly suppressed the growth of cress and barnyard grass seedlings in a concentration- and species-dependent manner. Two phytotoxic substances were separated using several purification steps and characterized through spectral analysis as dehydrovomifoliol and loliolide. Dehydrovomifoliol and loliolide significantly arrested the seedling growth of cress in the concentrations of 0.1 and 0.01 mM, respectively. The extract concentrations needed for 50% growth inhibition (I50 values) of cress seedlings were 3.16–3.01 mM for dehydrovomifoliol and 0.03–0.02 mM for loliolide. The results suggest that these two allelopathic substances might play a vital role in the phytotoxicity of Albizia richardiana leaves.

Cells ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 178
Author(s):  
Jiann Ruey Ong ◽  
Oluwaseun Adebayo Bamodu ◽  
Nguyen Viet Khang ◽  
Yen-Kuang Lin ◽  
Chi-Tai Yeh ◽  
...  

Hepatocellular carcinoma (HCC) is one of the most diagnosed malignancies and a leading cause of cancer-related mortality globally. This is exacerbated by its highly aggressive phenotype, and limitation in early diagnosis and effective therapies. The SUMO-activating enzyme subunit 1 (SAE1) is a component of a heterodimeric small ubiquitin-related modifier that plays a vital role in SUMOylation, a post-translational modification involving in cellular events such as regulation of transcription, cell cycle and apoptosis. Reported overexpression of SAE1 in glioma in a stage-dependent manner suggests it has a probable role in cancer initiation and progression. In this study, hypothesizing that SAE1 is implicated in HCC metastatic phenotype and poor prognosis, we analyzed the expression of SAE1 in several cancer databases and to unravel the underlying molecular mechanism of SAE1-associated hepatocarcinogenesis. Here, we demonstrated that SAE1 is over-expressed in HCC samples compared to normal liver tissue, and this observed SAE1 overexpression is stage and grade-dependent and associated with poor survival. The receiver operating characteristic analysis of SAE1 in TCGA−LIHC patients (n = 421) showed an AUC of 0.925, indicating an excellent diagnostic value of SAE1 in HCC. Our protein-protein interaction analysis for SAE1 showed that SAE1 interacted with and activated oncogenes such as PLK1, CCNB1, CDK4 and CDK1, while simultaneously inhibiting tumor suppressors including PDK4, KLF9, FOXO1 and ALDH2. Immunohistochemical staining and clinicopathological correlate analysis of SAE1 in our TMU-SHH HCC cohort (n = 54) further validated the overexpression of SAE1 in cancerous liver tissues compared with ‘normal’ paracancerous tissue, and high SAE1 expression was strongly correlated with metastasis and disease progression. The oncogenic effect of upregulated SAE1 is associated with dysregulated cancer metabolic signaling. In conclusion, the present study demonstrates that SAE1 is a targetable cancer metabolic biomarker with high potential diagnostic and prognostic implications for patients with HCC.


2021 ◽  
Vol 11 (8) ◽  
pp. 3542
Author(s):  
Ramida Krumsri ◽  
Kaori Ozaki ◽  
Toshiaki Teruya ◽  
Hisashi Kato-Noguchi

Phytotoxic substances released from plants are considered eco-friendly alternatives for controlling weeds in agricultural production. In this study, the leaves of Afzelia xylocarpa (Kurz) Craib. were investigated for biological activity, and their active substances were determined. Extracts of A. xylocarpa leaf exhibited concentration-dependent phytotoxic activity against the seedling length of Lepidium sativum L., Medicago sativa L., Phleum pratense L., and Echinochloa crus-galli (L.) P. Beauv. Bioassay-guided fractionation of the A. xylocarpa leaf extracts led to isolating and identifying two compounds: vanillic acid and trans-ferulic acid. Both compounds were applied to four model plants using different concentrations. The results showed both compounds significantly inhibited the model plants’ seedling length in a species-dependent manner (p < 0.05). The phytotoxic effects of trans-ferulic acid (IC50 = 0.42 to 2.43 mM) on the model plants were much greater than that of vanillic acid (IC50 = 0.73 to 3.17 mM) and P. pratense was the most sensitive to both compounds. In addition, the application of an equimolar (0.3 mM) mixture of vanillic acid and trans-ferulic acid showed the synergistic effects of the phytotoxic activity against the root length of P. pratense and L. sativum. These results suggest that the leaves of A. xylocarpa and its phytotoxic compounds could be used as a natural source of herbicides.


2004 ◽  
Vol 33 (1) ◽  
pp. 11-19 ◽  
Author(s):  
RY Li ◽  
HD Song ◽  
WJ Shi ◽  
SM Hu ◽  
YS Yang ◽  
...  

In addition to serving as a fat depot, adipose tissue is also considered as an important endocrine organ that synthesizes and secretes a number of factors. Leptin is an adipocyte-derived hormone that plays a vital role in energy balance. Expression of leptin is regulated by dietary status and hormones. In the present study, we report that galanin, an orexigenic peptide, inhibits leptin expression and secretion in rat adipose tissue and in 3T3-L1 adipocytes. Treatment with galanin (25 micro g/animal) induced approximately 46% down-regulation of leptin secretion at 15 min, followed by 40, 37 and 47% decreases in leptin secretion at 1, 2 and 4 h respectively. Although Northern blot analysis of adipose tissue from the same animals showed that leptin mRNA expression in adipose tissue was unaffected by galanin treatment for 2 h, galanin treatment for 4 h led to decline of leptin mRNA expression in a dose-dependent manner. Meanwhile, treating the rats with galanin had no effect on leptin mRNA expression in the hypothalamus. The inhibitory action of the galanin on leptin mRNA and protein levels was also observed in vitro. When incubated with 10 nM galanin for 48 h, leptin mRNA expression and protein secretion also decreased in 3T3-L1 adipocytes. On the other hand, galanin was found not only to express in rat adipose tissue, but also to increase about 8-fold after fasting. Based on these data, we speculate that increased galanin expression in rat adipose tissue after fasting may be involved in reducing leptin expression and secretion in fasting rats.


2021 ◽  
Author(s):  
Julissa Rojas-Sandoval

Abstract T. catappa is a hardy, fast-growing, deciduous multipurpose tree, reaching 25 (-40) m tall and producing an edible fruit. It plays a vital role in coastline stabilization as a tree component of strandline plant communities in the western Indian Ocean, South-East Asia and the South Pacific. Under suitable conditions it is a well-formed tree and has been widely planted throughout the tropics for shade, ornament and nuts, especially along sandy seashores (Heinsleigh and Holaway, 1988; Little and Skolmen, 1989). It is much used in agroforestry systems in the Philippines.


1998 ◽  
Vol 10 (4) ◽  
pp. 299 ◽  
Author(s):  
Bijay S. Jaiswal ◽  
Gopal C. Majumder

An investigation was carried out to analyse the biochemical parameters influencing forward motility (FM) initiation in vitro in the goat caput-epididymal immature spermatozoa. Forward motility was induced in approximately 55% of caput-sperm upon incubation in an alkaline (pH 8.0) modified Ringer’s solution containing theophylline (30 mM) (an inhibitor of cyclic AMP phosphodiesterase), dialysed epi-didymal plasma (EP) and bicarbonate. Both EP and bicarbonate induced sperm motility in a dose-dependent manner, and at saturating doses EP (0.6 mg protein mL–1) and bicarbonate (25 mM) induced FM in approx-imately 38% and 44% of the cells, respectively. The motility-promoting efficacy of EP was attributed to a heat-stable protein termed ‘forward motility protein’ (FMP). Bicarbonate served as an initiator as well as a stabilizer of FM and its action was not dependent on FMP. FMP can induce FM in the caput-sperm, but it is not essential for sperm motility initiation. Alteration of the medium pH from 6.60 to 8.00 caused a marked increase in the EP or bicarbonate-dependent sperm FM initiation, as well as intrasperm pH. At the physio-logical pH, bicarbonate served as a much more potent motility activator than FMP, although both the motility promoters showed maximal efficacy at alkaline pH (~7.8). EP as well as bicarbonate elevated the intrasperm cyclic AMP level. Unlike EP, bicarbonate is capable of increasing intrasperm pH. The intrasperm pH increased from 6.54 0.02 to 6.77 0.03 during sperm transit from caput to cauda. The data are con-sistent with the view that FMP activates sperm forward motility by enhancing the intrasperm cyclic AMP level and that extracellular bicarbonate and pH play a vital role in the initiation of sperm FM during the epi-didymal transit.


2020 ◽  
Vol 9 (1) ◽  
pp. 48-54
Author(s):  
Khaga Raj Sharma

 Medicinal plants are safe and the oldest natural products used for many years to conserve food, to treat health disorders and to prevent diseases. The active chemical compounds formed during secondary vegetal metabolism is usually responsible for the biological properties of some plant species used throughout the world for various purposes including treatment of diabetes, cancer, infectious diseases etc. The present study was undertaken to analyze the phytochemicals by colour differentiation method, to evaluate the toxic effect by phytotoxic assay, antidiabetic activity by α amylase enzyme inhibition and antioxidant potential by DPPH (2,2-diphenyl-1-picrylhydrazyl) scavenging activity of methanolic extract of Ageratum houstonianum. Treatment of problem in carbohydrate uptake needed the inhibition of α-amylase plays a role in the digestion of polysaccharide and glycogen, is made a strategy for controlling diabetes. For this study whole plant was collected, dried and the powder was made. The extraction was carried out by cold percolation in which methanol was used as a solvent. The methanolic extract was subjected to In-vitro phytotoxic activity by adopting the standard protocol. The α-amylase enzyme inhibition activity of plant extract was carried out by using starch as substrate, pancreatic α amylase as the enzyme, and acarbose as standard. The result of in-vitro phytotoxic bioassay revealed that the plant extract showed moderate activity with percentage growth regulation 80 and 25 percent in a concentration-dependent manner. The α-amylase enzyme inhibition was 74.13 to 99.39 percent in a dose-dependent manner. The antioxidant potential of Ageratum houstonianum extract showed mild activity with IC50 123.67 μg/ml as compared to the standard ascorbic acid IC50 5.38 μg/ ml. It is concluded from the present study that Ageratum houstonianum could be used as a natural source to isolate antioxidant, anti-hyperglycemic agent, herbicide and weedicide as it shows a good α amylase inhibition, radical scavenging and phytotoxic activity respectively.


2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Chenlin Gao ◽  
Jiao Chen ◽  
Fang Fan ◽  
Yang Long ◽  
Shi Tang ◽  
...  

Background. Hyperglycemia plays a vital role in diabetic nephropathy (DN); autophagy and its potential upregulator receptor-interacting protein kinase 2 (RIPK2) are associated with ROS, which play a potential role in regulating NLRP3, and may be involved in inflammation in DN. Aim. In this study, we aimed to explore the mechanisms mediated by RIPK2 in autophagy and the relationship with ROS-NLRP3 of DN, by investigating the levels of RIPK2 and autophagy in glomerular mesangial cells (GMCs) stimulated with high glucose. Material and Methods. GMCs were divided into the following groups: normal group (NC), high glucose group (HG), and RIPK2 siRNA group. RIPK2, LC3, caspase1, and IL-1β levels were measured by western blotting and RT-PCR. Autophagosomes were measured by GFP-RFP-LC3; ROS were detected by DCFH-DA. Results. High glucose upregulated RIPK2 and LC3 in GMCs during short periods (0-12 h) (p<0.01), while RIPK2 and LC3 were significantly downregulated in the long term (12-72 h) (p<0.01); these changes were positively correlated with glucose concentration (p<0.01). In addition, levels of ROS, caspase1, and IL-1β increased in a time- and dose-dependent manner in the high glucose group, even with an increased expression of LC3 (p<0.01). However, LC3 expression decreased in the siRIPK2 group, while levels of ROS, caspase1, and IL-1β increased (p<0.01). Conclusions. Autophagy was activated by high glucose at short time periods but was inhibited in the long term, demonstrating a dual role for high glucose in autophagy of GMCs. RIPK2 regulates ROS-NLRP3 inflammasome signaling through autophagy and may be involved in the pathogenesis of DN.


2018 ◽  
Vol 13 (11) ◽  
pp. 1934578X1801301 ◽  
Author(s):  
Sutjaritpan Boonmee ◽  
Arihiro Iwasaki ◽  
Kiyotake Suenaga ◽  
Hisashi Kato-Noguchi

Jatropha podagrica Hook. is cultivated as an ornamental plant and is also used in traditional medicine. The species has various pharmacological properties, but it has not yet been investigated for any potential allelopathic activity and allelopathic substances. In this study, an allelopathic active substance was isolated from an aqueous methanol extract of J. podagrica leaves through chromatography and reverse-phase HPLC. The substance was characterized as 6,7-dimethoxychromone by spectral analysis. 6,7-Dimethoxychromone significantly inhibited the shoots and roots of cress at concentrations greater than 0.3 mM. The concentrations required of 6,7-dimethoxychromone for 50% growth inhibition of cress shoots and roots were 0.95 and 0.83 mM, respectively. The inhibitory activity against the seedling growth of cress indicates that 6,7-dimethoxychromone may contribute to the allelopathic effects and may be responsible for the allelopathic activity in J. podagrica. This report is the first on the allelopathic activity of 6,7-dimethoxychromone as an allelopathic substance from J. podagrica.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Yu Zhan ◽  
Xuegui Tang ◽  
Hong Xu ◽  
Shiyu Tang

Background. Maren pills have been used to treat constipation. Aquaporin 3 (AQP3) plays a vital role in regulating water transfer in the colon. It has been reported that the downregulation of AQP3 can regulate liquid water metabolism and intestinal permeability in irritable bowel syndrome (IBS) rats’ colon via NF-κB pathway. In this study, we investigated whether the laxative effect of Maren pills is associated with the regulation of AQP3 and NF-κB signaling pathway in the colon. Methods. The compound diphenoxylate suspension-induced STC rats received Maren pills intragastrically for 1 consecutive week to evaluate the laxative effect of Maren pills involving the regulation of AQP3 and NF-κB signaling pathway. Moreover, human intestinal epithelial cells (HT-29) were treated with drug serum to obtain in vitro data. Results. Our results revealed that treatment with Maren pills increased the stool number, moisture content of feces, and intestinal transit rate in a dose-dependent manner. Maren pills significantly increased the AQP3, fibrosis transmembrane conductance regulator (CFTR), and protein kinase A (PKA) proteins in the colon of rats and in HT-29 cells. Mechanistically, Maren pills obviously inhibited the activation of NF-κB pathway in the colon of rats and in HT-29 cells. Conclusion. These results suggest that the laxative effect of Maren pills is associated with the increased expression of AQP3 by downregulating NF-κB signal pathway.


2010 ◽  
Vol 5 (1) ◽  
pp. 1934578X1000500
Author(s):  
Hui-Yuan Gao ◽  
Xiao-Bo Wang ◽  
Rong-Gang Xi ◽  
Bo-Hang Sun ◽  
Jian Huang ◽  
...  

From the nuts of Castanea mollissima Blume, a new kauranoid diterpene glycoside, named mollioside (1), was isolated. Its structure was established as (4R, 5S, 6R, 8R, 9S, 10S, 13R, 16R) 17-O-β-D-glucopyranoside, ent-6,7-epoxy-6α-hydroxyl-6,7-secokaur-19-oic acid, 6, 19-lactone-16β, 17-diol on the basis of HR-FAB-MS, 1D, 2D-NMR and CD spectral analysis. The aglycone (1a, named mollissin), also as a new compound, was obtained after enzymatic hydrolysis of 1. Both compounds exhibited significant growth inhibitory activity on HeLa tumor cells, but no activity on A375-S2.


Sign in / Sign up

Export Citation Format

Share Document