scholarly journals A Method for the Design and Optimization of Nonlinear Tuned Damping Concepts to Mitigate Self-Excited Drill String Vibrations Using Multiple Scales Lindstedt-Poincaré

2021 ◽  
Vol 11 (4) ◽  
pp. 1559
Author(s):  
Vincent Kulke ◽  
Paul Thunich ◽  
Frank Schiefer ◽  
Georg-Peter Ostermeyer

In downhole drilling systems, self-excited torsional vibrations caused by the bit-rock interactions can affect the drilling process and lead to the premature failure of components. Especially self-excited oscillations of higher-order modes lead to critical dynamic loads. The slim drill string design and the naturally limited drilled borehole diameter limit the installation space, power supply and lead to numerous potentially critical self-excited torsional modes. Consequently, small and robust passive damping concepts are required. The variety of possible downhole boundary conditions and potential damper designs necessitates analytical solutions for effective damper design and optimization. In this paper, two nonlinear passive damper concepts are investigated regarding design and effectiveness to reduce self-excited high-frequency torsional oscillations in drill string dynamics. Based on a finite element model of a drill string, a suitable minimal model based on the identified critical mode is generated and solved analytically using the Multiple Scales Lindstedt-Poincaré (MSLP) method. The advantages of MSLP compared to conventional MS methods are shown for this example. On the basis of the analytical solution, parameter influences are determined, and design equations are derived. The analytical results are transferred to self-excited drill string vibrations and discussed using time domain simulations of the drill string model.

1978 ◽  
Vol 100 (2) ◽  
pp. 179-187
Author(s):  
D. C. Ohanehi ◽  
L. D. Mitchell

This paper outlines the theoretical description of the vibratory portion of the rotary-vibratory drilling process. A multiple mechanical element model is used to describe the drill string and rock-rock bit assembly. The drill string model has continuously distributed properties of mass, stiffness, and external drilling-mud damping. A closed form solution is developed using boundary condition matching at the end of each mechanical element. The solution is used to compute the power input to the system by a vibratory unit, the power delivered to the rock, and the power lost to the drilling mud through vibratory losses. From these data, efficiencies are computed. The analytical solution has been checked in parallel with a transfer matrix computer solution. The results are identical within computer precision. The analytical model is then applied to the study of the Drilling Research Incorporated (DRI) prototype drilling system and its test drilling parameters for the 1957 test drilling. Explanations of the limits of the increase in drilling rates to 2:1 are explored. The results are explored relative to the potential for increasing the drill penetration rates by system redesign. Conclusions are drawn concerning the most productive routes to be taken for rotary-vibratory drilling systems and for the vibratory driver. It has become clear that successful future downhole rotary-vibratory drilling rigs will require a complete system understanding, a complete system design, and a new concept in vibratory driver.


2021 ◽  
Vol 143 (6) ◽  
Author(s):  
Sadok Sassi ◽  
Jamil Renno ◽  
Han Zhou ◽  
Amr Baz

Abstract During the drilling process in oil and gas fields, slender drill strings often experience a multitude of complex and simultaneous vibrational phenomena. Drill string vibrations hinder the drilling process and can cause premature wear and damage to the drilling equipment. Here, the suppression of drill string vibrations during drilling operations is experimentally investigated using a novel drill string design, based on the use of innovative periodic inserts that control the vibration transmissibility in different directions. These inserts are equipped with viscoelastic rings that act as sources of local resonances, surrounding piezoelectric actuators that generate internal axial loading when electrically excited. An experimental prototype that combined all these details was constructed and tested to demonstrate the periodic drill string's feasibility and effectiveness in minimizing undesirable vibrations. The obtained results indicate that the periodic inserts’ careful design can effectively enhance the drill strings’ dynamic behavior and conveniently regulate its bandgap characteristics. Both radial and axial vibrations were controlled, and the vibrations’ amplitude was reduced significantly over a wide range of frequencies. The proposed approach appears to present a viable means for designing intelligent drill strings with tunable bandgap characteristics.


Author(s):  
Njål Tengesdal ◽  
Christian Holden ◽  
Eilif Pedersen

Abstract In this paper, we present a dynamic model for a generic drill-string. The model is developed with the intention for component-based simulation with coupling to external subsystems. The performance of the drill-string is vital in terms of efficient wellbore excavation for increased hydrocarbon extraction. Drill-string vibrations limit the performance of rotary drilling; the phenomenon is well-known and still a subject of interest in academia and in industry. In this work, we have developed a nonlinear flexible drill-string model based on Lagrangian dynamics, to simulate the performance during vibrations. The model incorporates dynamics governed by lateral bending, longitudinal motion and torsional deformation. The elastic property of the string is modeled with mode shape functions representing the elastic deformation, with a finite set of modal coordinates. By developing a bond graph model from the equations of motion, we can ensure correct causality of the model towards interacting subsystems. The model is analyzed through extensive simulations in case studies, comparing the qualitative behavior of the model with state-of-the art models. The flexible drill-string model presented in this paper will aid in developing simulation case studies and parameter identification for offshore drilling operations.


Author(s):  
Jialin Tian ◽  
Xuehua Hu ◽  
Liming Dai ◽  
Lin Yang ◽  
Yi Yang ◽  
...  

This paper presents a new drilling tool with multidirectional and controllable vibrations for enhancing the drilling rate of penetration and reducing the wellbore friction in complex well structure. Based on the structure design, the working mechanism is analyzed in downhole conditions. Then, combined with the impact theory and the drilling process, the theoretical models including the various impact forces are established. Also, to study the downhole performance, the bottom hole assembly dynamics characteristics in new condition are discussed. Moreover, to study the influence of key parameters on the impact force, the parabolic effect of the tool and the rebound of the drill string were considered, and the kinematics and mechanical properties of the new tool under working conditions were calculated. For the importance of the roller as a vibration generator, the displacement trajectory of the roller under different rotating speed and weight on bit was compared and analyzed. The reliable and accuracy of the theoretical model were verified by comparing the calculation results and experimental test results. The results show that the new design can produce a continuous and stable periodic impact. By adjusting the design parameter matching to the working condition, the bottom hole assembly with the new tool can improve the rate of penetration and reduce the wellbore friction or drilling stick-slip with benign vibration. The analysis model can also be used for a similar method or design just by changing the relative parameters. The research and results can provide references for enhancing drilling efficiency and safe production.


Author(s):  
Jialin Tian ◽  
Jie Wang ◽  
Siqi Zhou ◽  
Yinglin Yang ◽  
Liming Dai

Excessive stick–slip vibration of drill strings can cause inefficiency and unsafety of drilling operations. To suppress the stick–slip vibration that occurred during the downhole drilling process, a drill string torsional vibration system considering the torsional vibration tool has been proposed on the basis of the 4-degree of freedom lumped-parameter model. In the design of the model, the tool is approximated by a simple torsional pendulum that brings impact torque to the drill bit. Furthermore, two sliding mode controllers, U1 and U2, are used to suppress stick–slip vibrations while enabling the drill bit to track the desired angular velocity. Aiming at parameter uncertainty and system instability in the drilling operations, a parameter adaptation law is added to the sliding mode controller U2. Finally, the suppression effects of stick–slip and robustness of parametric uncertainty about the two proposed controllers are demonstrated and compared by simulation and field test results. This paper provides a reference for the suppression of stick–slip vibration and the further study of the complex dynamics of the drill string.


Author(s):  
B. Besselink ◽  
N. van de Wouw ◽  
H. Nijmeijer

Rotary drilling systems are known to exhibit torsional stick-slip vibrations, which decrease drilling efficiency and accelerate the wear of drag bits. The mechanisms leading to these torsional vibrations are analyzed using a model that includes both axial and torsional drill string dynamics, which are coupled via a rate-independent bit-rock interaction law. Earlier work following this approach featured a model that lacked two essential aspects, namely, the axial flexibility of the drill string and dissipation due to friction along the bottom hole assembly. In the current paper, axial stiffness and damping are included, and a more realistic model is obtained. In the dynamic analysis of the drill string model, the separation in time scales between the fast axial dynamics and slow torsional dynamics is exploited. Therefore, the fast axial dynamics, which exhibits a stick-slip limit cycle, is analyzed individually. In the dynamic analysis of a drill string model without axial stiffness and damping, an analytical approach can be taken to obtain an approximation of this limit cycle. Due to the additional complexity of the model caused by the inclusion of axial stiffness and damping, this approach cannot be pursued in this work. Therefore, a semi-analytical approach is developed to calculate the exact axial limit cycle. In this approach, parametrized parts of the axial limit cycle are computed analytically. In order to connect these parts, numerical optimization is used to find the unknown parameters. This semi-analytical approach allows for a fast and accurate computation of the axial limit cycles, leading to insight in the phenomena leading to torsional vibrations. The effect of the (fast) axial limit cycle on the (relatively slow) torsional dynamics is driven by the bit-rock interaction and can thus be obtained by averaging the cutting and wearflat forces acting on the drill bit over one axial limit cycle. Using these results, it is shown that the cutting forces generate an apparent velocity-weakening effect in the torsional dynamics, whereas the wearflat forces yield a velocity-strengthening effect. For a realistic bit geometry, the velocity-weakening effect is dominant, leading to the onset of torsional vibrations.


2011 ◽  
Vol 291-294 ◽  
pp. 1952-1956 ◽  
Author(s):  
Xue Liang Bi ◽  
Jian Wang ◽  
Zhan Lin Wang ◽  
Shi Hui Sun

In the drilling process, axial vibration, transverse vibration and torsional vibration happen to drilling string. And the coupled vibration is more complex. In the resonance state, drilling string collides with the wall, which causes serious damage on drilling string in a short time and results in economic loss to the drilling operation. In this paper, the regularity of coupled vibration is analyzed by using finite element method. The model of full-hole drilling strings is established. The distribution regularities of coupled resonant frequency are obtained through computer analysis. The coupled model is more accurate than single vibration model. And the gaps of high rotary speed resonance regions are larger. Resonance state can be avoided by changing rotary speed, and drilling accidents can be reduced.


1963 ◽  
Vol 85 (2) ◽  
pp. 187-194 ◽  
Author(s):  
P. R. Paslay ◽  
D. B. Bogy

An analysis of the longitudinal forces and the resulting longitudinal motions of an idealized drill string is presented. The only external force excitation considered occurs at the bit and is due to the intermittent contact of the teeth with the bottom of the hole. Attention has been restricted to the following two salient possibilities: 1 - Excitation at the bit may develop oscillating forces at the bit with amplitudes of the same order of magnitude as those of the bit load. 2 - Appreciable bit load variation may be detected by instruments which measure the motion of the drill string near its top. The first possibility is important if maximum penetration rate is to be achieved, and the second possibility is important in implementing practical measurement of the phenomenon. From the results of the specific example considered in this report, it is concluded that possibilities 1 and 2 may occur in sufficient magnitude to be influential, but experimental data on the actual bit motion and the damping will be required to evaluate the effect. The analysis is presented in such form that the influence of the various parts of the system can easily be evaluated.


Sign in / Sign up

Export Citation Format

Share Document