scholarly journals Using UAV to Detect Solar Module Fault Conditions of a Solar Power Farm with IR and Visual Image Analysis

2021 ◽  
Vol 11 (4) ◽  
pp. 1835
Author(s):  
Kuo-Chien Liao ◽  
Jau-Huai Lu

In recent years, solar energy has been regarded as one of the most important sustainable energy sources. Under the rapid and large-scale construction of solar farms, the maintenance and inspection of the health conditions of solar modules in a large solar farm become an important issue. This article proposes a method for detecting solar cell faults with unmanned aerial vehicle (UAV) equipped with a thermal imager and a visible light camera, and providing a fast and reliable detection method. The detection process includes a new concept of real-time monitoring of the detected area and analysis of the health of solar panels. An image process is proposed that may quickly and accurately detect the abnormality of a solar module. The whole process includes grayscale conversion, filtering, 3-D temperature representation, probability density function, and cumulative density function analysis. Ten cases in real fields have been studied with this process, including large scale solar farms and small size solar modules installed on buildings. Results show that the cumulative density function is a convenient way to determine the health status of the solar panel and may provide maintenance personnel a basis for determining whether replacement of solar cells is necessary for improving the overall power generation efficiency and simplify the maintenance process. It is worth noting that image recognition can increase the clarity of IR images and the cumulative chart can judge the defect rate of the cell. These two methods were combined to provide an instant, fast and accurate defect judgment.


2020 ◽  
Vol 67 (1) ◽  
pp. 16-21
Author(s):  
Sergey M. Bakirov ◽  
Sergey S. Eliseev

The modern level of agriculture is described by the introduction of renewable energy sources. New generation sprinkler machines are being put into production, in the power system of which solar panels are used. One of the factors that negatively affect the performance of solar cells in an open field is their dusting, which is formed as a result of dust storms and wind. Cleaning of the battery panels is carried out in various ways: manual, semi-automatic and automatic. Dust cleaning is included in maintenance. (Research purpose) The research purpose is to determine the conditions for performing the maintenance, which consists in cleaning solar panels in the field. (Materials and methods) Theoretical (analysis, hypothesis design), empirical (observation, testing), experimental (ascertaining experiment) methods has been used during research. (Results and discussion) The article describes an introduced parameter for estimating the level of dusting. The power loss indicator shows the ratio of the power of the dusted module to the power of the clean module. Unscheduled maintenance is affected by the distance of the solar module from the repair point, the power of the solar module, the loss from dusting, the frequency of maintenance and cost indicators. (Conclusions) It has been found the dependence of maintenance period of the solar module of the sprinkler machine on the distance to the sprinkler machine, to the point of maintenance and repair, the power loss coefficient in case of dusting of the solar module, the cost of performing maintenance, as well as the frequency of maintenance. Article describes the boundaries of the choice of operating mode of the sprinkler between unscheduled maintenance for cleaning the solar module and the acceptance of additional power of the sprinkler power supply system according to the criterion of minimum operating costs.



2021 ◽  
Vol 502 (3) ◽  
pp. 3942-3954
Author(s):  
D Hung ◽  
B C Lemaux ◽  
R R Gal ◽  
A R Tomczak ◽  
L M Lubin ◽  
...  

ABSTRACT We present a new mass function of galaxy clusters and groups using optical/near-infrared (NIR) wavelength spectroscopic and photometric data from the Observations of Redshift Evolution in Large-Scale Environments (ORELSE) survey. At z ∼ 1, cluster mass function studies are rare regardless of wavelength and have never been attempted from an optical/NIR perspective. This work serves as a proof of concept that z ∼ 1 cluster mass functions are achievable without supplemental X-ray or Sunyaev-Zel’dovich data. Measurements of the cluster mass function provide important contraints on cosmological parameters and are complementary to other probes. With ORELSE, a new cluster finding technique based on Voronoi tessellation Monte Carlo (VMC) mapping, and rigorous purity and completeness testing, we have obtained ∼240 galaxy overdensity candidates in the redshift range 0.55 < z < 1.37 at a mass range of 13.6 < log (M/M⊙) < 14.8. This mass range is comparable to existing optical cluster mass function studies for the local universe. Our candidate numbers vary based on the choice of multiple input parameters related to detection and characterization in our cluster finding algorithm, which we incorporated into the mass function analysis through a Monte Carlo scheme. We find cosmological constraints on the matter density, Ωm, and the amplitude of fluctuations, σ8, of $\Omega _{m} = 0.250^{+0.104}_{-0.099}$ and $\sigma _{8} = 1.150^{+0.260}_{-0.163}$. While our Ωm value is close to concordance, our σ8 value is ∼2σ higher because of the inflated observed number densities compared to theoretical mass function models owing to how our survey targeted overdense regions. With Euclid and several other large, unbiased optical surveys on the horizon, VMC mapping will enable optical/NIR cluster cosmology at redshifts much higher than what has been possible before.



2021 ◽  
Vol 13 (16) ◽  
pp. 3062
Author(s):  
Guo Zhang ◽  
Boyang Jiang ◽  
Taoyang Wang ◽  
Yuanxin Ye ◽  
Xin Li

To ensure the accuracy of large-scale optical stereo image bundle block adjustment, it is necessary to provide well-distributed ground control points (GCPs) with high accuracy. However, it is difficult to acquire control points through field measurements outside the country. Considering the high planimetric accuracy of spaceborne synthetic aperture radar (SAR) images and the high elevation accuracy of satellite-based laser altimetry data, this paper proposes an adjustment method that combines both as control sources, which can be independent from GCPs. Firstly, the SAR digital orthophoto map (DOM)-based planar control points (PCPs) acquisition is realized by multimodal matching, then the laser altimetry data are filtered to obtain laser altimetry points (LAPs), and finally the optical stereo images’ combined adjustment is conducted. The experimental results of Ziyuan-3 (ZY-3) images prove that this method can achieve an accuracy of 7 m in plane and 3 m in elevation after adjustment without relying on GCPs, which lays the technical foundation for a global-scale satellite image process.



Sensors ◽  
2020 ◽  
Vol 20 (24) ◽  
pp. 7067
Author(s):  
Jia-Hao He ◽  
Ding-Peng Liu ◽  
Cheng-Hsien Chung ◽  
Hsin-Haou Huang

In this study, infrared thermography is used for vibration-based structural health monitoring (SHM). Heat sources are employed as sensors. An acrylic frame structure was experimentally investigated using the heat sources as structural marker points to record the vibration response. The effectiveness of the infrared thermography measurement system was verified by comparing the results obtained using an infrared thermal imager with those obtained using accelerometers. The average error in natural frequency was between only 0.64% and 3.84%. To guarantee the applicability of the system, this study employed the mode shape curvature method to locate damage on a structure under harsh environments, for instance, in dark, hindered, and hazy conditions. Moreover, we propose the mode shape recombination method (MSRM) to realize large-scale structural measurement. The partial mode shapes of the 3D frame structure are combined using the MSRM to obtain the entire mode shape with a satisfactory model assurance criterion. Experimental results confirmed the feasibility of using heat sources as sensors and indicated that the proposed methods are suitable for overcoming the numerous inherent limitations associated with SHM in harsh or remote environments as well as the limitations associated with the SHM of large-scale structures.



SINERGI ◽  
2019 ◽  
Vol 24 (1) ◽  
pp. 73 ◽  
Author(s):  
Hamzah Eteruddin ◽  
Atmam Atmam ◽  
David Setiawan ◽  
Yanuar Z. Arief

People can make solar energy alternative energy by employing solar panels to generate electricity. The utilization of solar energy on a solar panel to generate electricity is affected by the weather and the duration of the radiation, and they will affect the solar panel’s temperature. There are various types of solar panels that can be found on the market today, including Mono-Crystalline and Poly-Crystalline. The difference in the material used needs to be observed in terms of temperature changes in the solar module. Our study’s findings showed that a change in the temperature would impact the solar panel’s output voltage, and the solar panel’s output voltage would change when it was connected to the load although the measured temperatures were almost the same.



2015 ◽  
Vol 129 ◽  
pp. 156-167 ◽  
Author(s):  
Yumin Chen ◽  
C. Jim Lim ◽  
John R. Grace ◽  
Junying Zhang ◽  
Yongchun Zhao ◽  
...  




Author(s):  
Bekhruzi Talbi Shokhzoda ◽  
Mikhail Georgievich Tyagunov

Looking at the history of solar energy and renewable energy in general, the authorities and scientists have been paying much attention to the recent period, due to the depletion of fossil energy resources and the growing difficulties in solving environmental problems. The development of solar energy has led to the use of solar energy concentrators. Concentrators are used to concentrate sunlight onto PV cells. This allows for a reduction in the cell area required for producing a given amount of power. The goal is to significantly reduce the cost of electricity generated by replacing expensive PV converter area with less expensive optical material. In this chapter, the authors talk about concentrators in solar energy, especially about modules based on holographic films. Holographic solar panels (HSP) in recent decades have appeared in large-scale production and been actively used in solar energy. Evaluations of other types of existing concentrators are presented.



2019 ◽  
Vol 11 (23) ◽  
pp. 6647 ◽  
Author(s):  
Suntiti Yoomak ◽  
Theerasak Patcharoen ◽  
Atthapol Ngaopitakkul

Solar rooftop systems in the residential sector have been rapidly increased in the term of installed capacity. There are various factors, such as climate, temperature, and solar radiation, that have effects on solar power generation efficiency. This paper presents a performance assessment of a solar system installed on the rooftop of residence in different regions of Thailand by using PSIM simulation. Solar rooftop installation comparison in different regions is carried out to evaluate the suitable location. In addition, three types of solar panels are used in research: monocrystalline, polycrystalline, and thin-film. The electrical parameters of real power and energy generated from the systems are investigated and analyzed. Furthermore, the economic evaluation of different solar rooftop system sizes using the monocrystalline module is investigated by using economic indicators of discounted payback period (DPP), net present value (NPV), internal rate of return (IRR), and profitability index (PI). Results show that the central region of Thailand is a suitable place for installing solar rooftop in terms of solar radiation, and the temperature has more solar power generation capacity than the other regions. The monocrystalline and polycrystalline solar panels can generate maximum power close to each other. All solar rooftop sizes with the Feed-in Tariff (FiT) scheme give the same DPP of 6.1 years, IRR of 15%, and PI of 2.57 which are better than the cases without the FiT scheme. However, a large-scale installation of solar rooftop systems can receive more electrical energy produced from the solar rooftop systems. As a result, the larger solar rooftop system sizes can achieve better economic satisfaction.



2019 ◽  
Vol 9 (3) ◽  
pp. 395 ◽  
Author(s):  
Sung-Min Kim ◽  
Myeongchan Oh ◽  
Hyeong-Dong Park

Photovoltaic (PV) energy is one of the most promising renewable energies in the world due to its ubiquity and sustainability. However, installation of solar panels on the ground can cause some problems, especially in countries where there is not enough space for installation. As an alternative, floating PV, with advantages in terms of efficiency and environment, has attracted attention, particularly with regard to installing large-scale floating PV for dam lakes and reservoirs in Korea. In this study, the potentiality of floating PV is evaluated, and the power production is estimated for 3401 reservoirs. To select a suitable reservoir for floating PV installation, we constructed and analyzed the water depth database using OpenAPI. We also used the typical meteorological year (TMY) data and topographical information to predict the irradiance distribution. As a result, the annual power production by all possible reservoirs was estimated to be 2932 GWh, and the annual GHG reduction amount was approximately 1,294,450 tons. In particular, Jeollanam-do has many reservoirs and was evaluated as suitable for floating PV installation because of its high solar irradiance. The results can be used to estimate priorities and potentiality as a preliminary analysis for floating PV installation.



Sign in / Sign up

Export Citation Format

Share Document