scholarly journals Stress and Fatigue Analysis of Picking Device Gears for a 2.6 kW Automatic Pepper Transplanter

2021 ◽  
Vol 11 (5) ◽  
pp. 2241
Author(s):  
Md Nafiul Islam ◽  
Md Zafar Iqbal ◽  
Milon Chowdhury ◽  
Mohammod Ali ◽  
Kiraga Shafik ◽  
...  

A seedling picking device is an essential component for an automatic transplanter to automatically convey the seedling to the dibbling part. It is necessary to find the appropriate material and dimensions for the picking device gears to avoid mechanical damage and increase their durability. Therefore, the objectives of this research were to analyze the stress of a picking device gear mechanism in order to select suitable materials and dimensions, and to predict the fatigue life by considering the damage level. The picking device gear shaft divided the input power into two categories, i.e., crank and cam gear sets. Finite element analysis simulation and American Gear Manufacturers Association standard stress analysis theory tests were conducted on both of the crank and cam gear sets for different materials and dimensions. A test bench was fabricated to collect the load (torque) data at different gear operating speeds. The torque data were analyzed using the load duration distribution method to observe the cyclic load patterns. The Palmgren–Miner cumulative damage rule was used to determine the damage level of the picking mechanism gears with respect to the operating speed. The desired lifespan of the transplanter was 255 h to meet the real field service life requirement. Predicted fatigue life range of the picking mechanism gears was recorded as from 436.65 to 4635.97 h, making it higher (by approximately 2 to 18 times) than the lifespan of the transplanter. According to the analyses, the “Steel Composite Material 420H carbon steel” material with a 5 mm face width gear was suitable to operate the picking device for a 10-year transplanter service life. The analysis of stress and fatigue presented in this study will guide the design of picking device gears with effective material properties to maintain the recommended service life of the pepper transplanter.

2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Rizqi Ilmal Yaqin ◽  
Angger Bagus Prasetiyo ◽  
Pritiansyah Pritiansyah ◽  
Muhammad Haritsah Amrullah ◽  
Binsar Maruli Tua Pakpahan

Propeller is part of a key component in fishing boat propulsion. Propeller can provide momentum to the fluid which can be a thrust on the ship. However, The failure of the propeller found prematurely. The failure of the propeller maybe because of overload on the propeller model so the fatigue life of the propeller becomes low. On the other hand, the rapid development of technology can simulate a design model to look for failures that occur. Finite Element Analysis is one of the designer solutions to determine the age of failure of a model and failure-prone areas in a model. This study uses propeller model data from fishing boat with engine 24HP in Dumai City TPI that always fail prematurely. The material used is copper alloy. While the drawing model uses Autodesk Inventor and Finite Element Analysis simulation using ANSYS R17.2 software with the number of model nodes is 51108 and the number of elements of the model is 26268. The results obtained from this study are Von Mises stress on the simulation model that is equal to 613.33 MPa to 0.01164 MPa. While the deformation value due to the effect of loading on the model is 5,3657 mm to 0 mm. These results affect the age of fatigue (fatigue life) on the model with the highest value 109 and the lowest 0. The results of the fatigue life value on the model affect the results of the level of damage and the safety number of the model with successive values of 1032 to 1 and 15 to 0.32446. The conclusion of the result is the propeller will fail prematurely.


Actuators ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 81
Author(s):  
Atif Zahid ◽  
Faisal Khan ◽  
Naseer Ahmad ◽  
Irfan Sami ◽  
Wasiq Ullah ◽  
...  

A dual mover yokeless multi-tooth (DMYMT) permanent magnet flux switching motor (PM-FSM) design is presented in this article for ropeless elevator applications. The excitation sources, including a field winding and permanent magnet, are on the short mover in the proposed design structure, whereas the stator is a simple slotted iron core, thus reducing the vertical transportation system cost. The operational principle of the proposed DMYMT in PM-FSM is introduced. The proposed dual mover yokeless multi-tooth Permanent Magnet Flux Switching Motor is analyzed and compared for various performance parameters in a Finite Element Analysis package. The proposed machine has high thrust force and cost-effectiveness compared to conventional dual permanent magnet motor. Finally, this paper also develops an analytical model for the proposed structure, validated by comparing it with Finite Element Analysis simulation results. Results show good agreement between analytical prediction and Finite Element Analysis results.


2019 ◽  
Vol 893 ◽  
pp. 1-5 ◽  
Author(s):  
Eui Soo Kim

Pressure vessels are subjected to repeated loads during use and charging, which can causefine physical damage even in the elastic region. If the load is repeated under stress conditions belowthe yield strength, internal damage accumulates. Fatigue life evaluation of the structure of thepressure vessel using finite element analysis (FEA) is used to evaluate the life cycle of the structuraldesign based on finite element method (FEM) technology. This technique is more advanced thanfatigue life prediction that uses relational equations. This study describes fatigue analysis to predictthe fatigue life of a pressure vessel using stress data obtained from FEA. The life prediction results areuseful for improving the component design at a very early development stage. The fatigue life of thepressure vessel is calculated for each node on the model, and cumulative damage theory is used tocalculate the fatigue life. Then, the fatigue life is calculated from this information using the FEanalysis software ADINA and the fatigue life calculation program WINLIFE.


Energies ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4711
Author(s):  
Armanto P. Simanjuntak ◽  
Jae-Young Lee

Printed circuit heat exchangers (PCHEs) are often subject to high pressure and temperature difference between the hot and cold channels which may cause a mechanical integrity problem. A conventional plate heat exchanger where the channel geometries are semi-circular and etched at one side of the stacked plate is a common design in the market. However, the sharp edge tip channel may cause high stress intensity. Double-faced type PCHE appears with the promising ability to reduce the stress intensity and stress concentration factor. Finite element analysis simulation has been conducted to observe the mechanical integrity of double-etched printed circuit heat exchanger design. The application of an additional ellipse upper channel helps the stress intensity decrease in the proposed PCHE channel. Five different cases were simulated in this study. The simulation shows that the stress intensity was reduced up to 24% with the increase in additional elliptical channel radius. Besides that, the horizontal offset channels configuration was also investigated in this study. Simulation results show that the maximum stress intensity of 2.5 mm offset configuration is 9% lower compared to the maximum stress intensity of 0 mm offset. This work proposed an additional elliptical upper channel with a 2.5 mm offset configuration as an optimum design.


Author(s):  
Xian-Kui Zhu ◽  
Rick Wang

Mechanical dents often occur in transmission pipelines, and are recognized as one of major threats to pipeline integrity because of the potential fatigue failure due to cyclic pressures. With matured in-line-inspection (ILI) technology, mechanical dents can be identified from the ILI runs. Based on ILI measured dent profiles, finite element analysis (FEA) is commonly used to simulate stresses and strains in a dent, and to predict fatigue life of the dented pipeline. However, the dent profile defined by ILI data is a purely geometric shape without residual stresses nor plastic deformation history, and is different from its actual dent that contains residual stresses/strains due to dent creation and re-rounding. As a result, the FEA results of an ILI dent may not represent those of the actual dent, and may lead to inaccurate or incorrect results. To investigate the effect of residual stress or plastic deformation history on mechanics responses and fatigue life of an actual dent, three dent models are considered in this paper: (a) a true dent with residual stresses and dent formation history, (b) a purely geometric dent having the true dent profile with all stress/strain history removed from it, and (c) a purely geometric dent having an ILI defined dent profile with all stress/strain history removed from it. Using a three-dimensional FEA model, those three dents are simulated in the elastic-plastic conditions. The FEA results showed that the two geometric dents determine significantly different stresses and strains in comparison to those in the true dent, and overpredict the fatigue life or burst pressure of the true dent. On this basis, suggestions are made on how to use the ILI data to predict the dent fatigue life.


2012 ◽  
Vol 49 (3) ◽  
pp. 282-287
Author(s):  
Zivancev Dragan ◽  
Torbica Aleksandra ◽  
Mastilovic Jasna ◽  
Knezevic Desimir ◽  
Djukic Nevena

2021 ◽  
pp. 1-9
Author(s):  
Jie Zhang ◽  
Ping Ye ◽  
Lizheng Zhang ◽  
Hongliu Wu ◽  
Tianxi Chi ◽  
...  

BACKGROUND: The treatment of adolescent patients with distal femoral cancer has always been a concern. The limb-salvage, regarded as a mainstream treatment, had been developed in recent years, but its application in children still remains challenging. This is because it can lead to potential limb-length discrepancy from the continued normal growth of the contralateral lower body. The extendable prosthesis could solve this problem. The principle is that it can artificially control the length of the prosthesis, making it consistent with the length of the side of the lower limbs. However, this prosthesis has some complications. The extendable prosthesis is classified into invasive and minimally invasive, which extends the prosthesis with each operation. OBJECTIVE: We designed a new non-invasive prosthesis that can be extended in the body. Based on the non-invasive and extendable characteristics, we need to verify the supporting performance of this prosthesis. METHODS: We carried out a mechanical testing method and finite element analysis simulation. CONCLUSION: The support performance and non-invasively extension of this prosthesis were verified.


Author(s):  
Arianna Stimilli ◽  
Cassie Hintz ◽  
Zhijun Li ◽  
Raul Velasquez ◽  
Hussain U. Bahia

Asphalt binder has the ability to self-heal during rest periods when repetitive loading is applied. Studying the effect of rest on fatigue law parameters provides useful insight into the healing capabilities of asphalt binders. Currently, standard testing and analysis procedures to quantify asphalt binder healing capability are limited and difficult to implement in practice. Fatigue is known to depend on both traffic loading and pavement structure. Power law relations (e.g., Nf = Aγ−B) are commonly used for fatigue analysis of pavement materials. Power laws are used to estimate fatigue life (i.e., number of cycles to failure, Nf) as a function of load amplitude (e.g., strain, γ), which is a reflection of the pavement structure. In this study, testing consisted of strain-controlled time sweeps in the dynamic shear rheometer with a single rest period inserted at a specified damage level. With the selected test, the effect of healing on the relationship between fatigue life and strain was investigated. Nine neat and modified binders were tested. Healing testing was conducted at multiple age levels and strains. Healing that resulted from a single rest period had an insignificant effect on fatigue performance compared with modification and oxidative aging. Although this paper highlights the challenges of using few rest periods to predict healing potential, preliminary results of testing with multiple rest periods show the importance of healing. Further investigation is needed to verify the effect of multiple rest periods on binder fatigue.


2001 ◽  
Vol 42 (5) ◽  
pp. 809-813 ◽  
Author(s):  
Young-Eui Shin ◽  
Kyung-Woo Lee ◽  
Kyong-Ho Chang ◽  
Seung-Boo Jung ◽  
Jae Pil Jung

2000 ◽  
Vol 123 (1) ◽  
pp. 150-154
Author(s):  
John H. Underwood ◽  
Michael J. Glennon

Laboratory fatigue life results are summarized from several test series of high-strength steel cannon breech closure assemblies pressurized by rapid application of hydraulic oil. The tests were performed to determine safe fatigue lives of high-pressure components at the breech end of the cannon and breech assembly. Careful reanalysis of the fatigue life tests provides data for stress and fatigue life models for breech components, over the following ranges of key parameters: 380–745 MPa cyclic internal pressure; 100–160 mm bore diameter cannon pressure vessels; 1040–1170 MPa yield strength A723 steel; no residual stress, shot peen residual stress, overload residual stress. Modeling of applied and residual stresses at the location of the fatigue failure site is performed by elastic-plastic finite element analysis using ABAQUS and by solid mechanics analysis. Shot peen and overload residual stresses are modeled by superposing typical or calculated residual stress distributions on the applied stresses. Overload residual stresses are obtained directly from the finite element model of the breech, with the breech overload applied to the model in the same way as with actual components. Modeling of the fatigue life of the components is based on the fatigue intensity factor concept of Underwood and Parker, a fracture mechanics description of life that accounts for residual stresses, material yield strength and initial defect size. The fatigue life model describes six test conditions in a stress versus life plot with an R2 correlation of 0.94, and shows significantly lower correlation when known variations in yield strength, stress concentration factor, or residual stress are not included in the model input, thus demonstrating the model sensitivity to these variables.


Sign in / Sign up

Export Citation Format

Share Document