scholarly journals Improvement on Flux Weakening Control Strategy for Electric Vehicle Applications

2021 ◽  
Vol 11 (5) ◽  
pp. 2422
Author(s):  
Claudio Bianchini ◽  
Giovanni Franceschini ◽  
Ambra Torreggiani

This paper proposes an optimized flux weakening (FW) control strategy for interior permanent-magnet synchronous electric motor to address the critical issues that could occur under torque setpoint transition in flux weakening region, due, for example, to an emergency braking. This situation is typical in electric vehicles where the electrical machines operate over a wide speed range to reach high power density and avoid gearboxes. Two modified traditional flux weakening strategies are proposed in this paper to improve torque control quality during high speed torque transition. The proposed modified control strategies were validated both by Matlab/Simulink simulations, modeling the power train of a light vehicle application, and extensive experimental tests on a dedicated test bench.

2012 ◽  
Vol 546-547 ◽  
pp. 313-319
Author(s):  
Liang Liang Mao ◽  
Xu Dong Wang ◽  
Mei Lan Zhou ◽  
Yan Ming Zhang ◽  
Jin Fa Liu

Interior permanent magnet synchronous motors can be applied to applications requiring wide-speed operation by means of flux-weakening control. While due to the fixed capacity of PWM inverter, the high speed operation range of interior permanent magnet synchronous motor (IPMSM) is mainly limited by the saturation of current regulator. In constant power region, in stead of the available voltage that controls the armature current vector, the current vector sometimes becomes uncontrollable in transient operations because of the current regulator saturation. In order to extend its operation range, the current vector control algorithm of IPM motor over the base speed operation is proposed in this paper which includes the decoupling current control and the voltage command compensation. Also this paper introduces a judgment method to monitor if the current regulator has gone into saturation or not. Finally on the basis of simulation results, the effectiveness of this control strategy is further confirmed by real drive tests.


Electronics ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 1558 ◽  
Author(s):  
Samer Saleh Hakami ◽  
Kyo-Beum Lee

Direct torque control (DTC) is considered one of the simplest and fastest control strategies used in motor drives. However, it produces large torque and flux ripples. Replacing the conventional two-level hysteresis torque controller (HTC) with a four-level HTC for a three-level neutral-point clamped (NPC) inverter can reduce the torque and flux ripples in interior permanent magnet synchronous motor (IPMSM) drives. However, the torque will not be controlled properly within the upper HTC bands when driving the IPMSM in the medium and high-speed regions. This problem causes the stator current to drop, resulting in poor torque control. To resolve this problem, a simple algorithm based on a torque error average calculation is proposed. Firstly, the proposed algorithm reads the information of the calculated torque and the corresponding torque reference to calculate the torque error. Secondly, the average value of torque error is calculated instantaneously as the reference torque changes. Finally, the average value of the torque error is used to indicate the operation of the proposed algorithm without the need for motor speed information. By using the proposed algorithm, the torque can be controlled well in all speed regions, and thus, a better stator current waveform can be obtained. Simulation and experimental results validate the effectiveness of the proposed method.


Electronics ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 173
Author(s):  
Lili Kang ◽  
Dongjie Jiang ◽  
Chaoying Xia ◽  
Yongjiu Xu ◽  
Kaiyi Sun

As the energy crisis and environmental pollution continue to be a gradual threat, the energy saving of transmission systems has become the focus of railway vehicle research and design. Due to their high-power density and efficiency features, permanent magnet synchronous motors (PMSM) have been gradually applied in railway vehicles. To improve the efficiency of the transmission system of diesel railway vehicles, it is a good option to use PMSM as both a generator and traction motor to construct a full permanent magnet transmission system (FPMTS). Due to the application of the new FPMTS, some of the original control strategies for diesel railway vehicle transmission systems are no longer applicable. Therefore, it is necessary to adjust and improve the control strategies to meet the needs of FPMTS. We studied several key issues that affect the reliability and comfort of the vehicles. As such, this paper introduced the FPMTS control strategy, including the coordinated control strategy of the diesel and the traction motor, the two degrees of freedom (2DOF) decoupling current regulator, the maximum torque control of the standardized unit current, the wheel slip protection control, and the fault protection strategy. The experiment was carried out on the test platform and the test run of the diesel shunting locomotive equipped with the FPMTS. The results showed that the control strategy described in this paper met the operation characteristics of the FPMTS and that the control performance was superior. The study of FPMTS lays the foundation for the subsequent application of permanent magnet motors in high-powered diesel locomotives and high-speed diesel multi-units.


Author(s):  
Dinh Hai Linh

In this paper, a type interior permanent magnet synchronous motor designs is proposed for sport scooter application to improve constant torque wide speed performance. Interior Permanent Magnet machines are widely used in automotive applications for their wide-speed range operation and low maintenance cost. An existing permanent magnet motor (commercial QS Motor) is 3 kW-3000 rpm. In order to improve torque and power in wide speed range, a IPM electric motor 5.5 kW -5000 rpm can run up to 100 km/h: An Step-Skewing Interior Permanent Magnet motor alternatives is designed and optimized in detail with optimal magnetic segment V shape. The electromagnetic charateristics of Interior Permanent Magnet motors with V shape are compared with the reference Surface Permanent Magnet motor for the same geometry parameter requirements. Detailed loss and efficiency result is also analyzed at rate and maximum speeds. A prototype motor is manufactured, and initial experimental tests are performed. Detailed comparison between Finite Element Analysis and test data are also presented. It is shown that it is possible to have an optimized Interior Permanent Magnet motor for such high-speed traction application. This paper will figure out optimal angle of magnetic V shape for maximum torque and minimum torque ripple.


Author(s):  
Nathaniel Steinbock ◽  
Laura Prange ◽  
Brian C. Fabien

Emergency lane changes are often the best course of action when avoiding obstacles on the road, but this maneuver has the possibility of sending the vehicle out of control. The University of Washington EcoCAR team has a hybrid-electric vehicle outfitted with an electric drivetrain and variable torque control to each of the rear wheels. Each rear wheel has an electric motor that is independently controlled to provide torque to the wheel. A lateral vehicle dynamics model is used to develop a torque control strategy to improve the safety and maneuverability of a modified hybrid-electric 2016 Camaro as part of the EcoCAR 3 competition. The specific scenario simulated is a two-lane lane change at a speed of 55 mph. We would like to increase the yaw and lateral accelerations that the vehicle can perform safely by controlling differing torques out of the two motors. Regulating these accelerations requires a control strategy over the left and right motor torques. Equal-torque control of the electric motors will be used as a baseline.


Energies ◽  
2019 ◽  
Vol 12 (17) ◽  
pp. 3261 ◽  
Author(s):  
Jianxia Sun ◽  
Cheng Lin ◽  
Jilei Xing ◽  
Xiongwei Jiang

The maximum-torque-per-ampere (MTPA) scheme is widely used in the interior permanent magnet synchronous machine (IPMSM) drive system to reduce copper losses. However, MTPA trajectory is complicated to solve analytically. In order to realize online MTPA trajectory tracking, this paper proposes a novel torque control strategy. The torque control is designed to be closed form. Considering the machine reluctance torque as the torque feedback, when this is compared with the torque reference, then the excitation torque reference can be obtained. Since the excitation torque is proportional to the q-axis current, the q-axis current reference can be fed by the excitation torque reference through a proportional regulator. Once the q-axis current reference is given, the d-axis current reference can be calculated based on the per-unit model, which aims to simplify the calculation and make the control strategy independent of machine parameters. In this paper, the stability of the control system is demonstrated. Meanwhile, simulation and experiment results show this torque control strategy can realize MTPA trajectory tracking online and have success in transients.


2011 ◽  
Vol 130-134 ◽  
pp. 2211-2215
Author(s):  
Bing Zhan Zhang ◽  
Han Zhao ◽  
An Dong Yin

Control strategy is the most important issue in the Plug-in Hybrid electric vehicles (PHEV) design, which has two modes: charge depleting mode (CD) and charge sustaining mode (CS). The different control strategies in depleting mode will have a great influence on PHEV dynamic performance and fuel economy. The engine optimal torque control strategy was proposed in the paper. The vehicle simulation model in Powertrain Systems Analysis Toolkit (PSAT) was adopted to evaluate the proposed control strategy. The aggressive highway drive cycle Artemis_hwy and a random drive cycle generated by Markov Process were used. The simulation results indicate the proposed control strategy has great improvement in fuel economy.


Sign in / Sign up

Export Citation Format

Share Document