scholarly journals Pile Base and Shaft Capacity under Various Types of Loading

2021 ◽  
Vol 11 (8) ◽  
pp. 3396
Author(s):  
Michał Baca ◽  
Jarosław Rybak

Pile bearing capacity is usually understood as the sum of the bearing capacities of the pile’s base and shaft. Nevertheless, the behaviour of the pile base and shaft can be different, depending on what testing method is used for the evaluation of the bearing capacity. In this paper, three different methods of pipe pile testing are introduced, which make it possible to evaluate the pile base and shaft bearing capacities. On the basis of the tests conducted on a laboratory scale and numerical simulations performed with the finite element method, different approaches to bearing capacity evaluation have been compared. As a result, some similarities and differences between the applied methods are presented.

2020 ◽  
Vol 238 ◽  
pp. 06006
Author(s):  
Tim Käseberg ◽  
Jana Grundmann ◽  
Johannes Dickmann ◽  
Stefanie Kroker ◽  
Bernd Bodermann

We designed, realized, and characterised an imaging Mueller matrix ellipsometry setup for the pixelwise measurement of the Mueller matrices in microscope images. Our setup is capable of performing measurements in reflection as well as in transmission in a broad range of angles of incidence for wavelengths between 400 nm and 700 nm. We compared measurements of specially designed nanostructured samples with AFM and SEM measurements as well as with numerical simulations using the finite element method.


2014 ◽  
Vol 577 ◽  
pp. 1097-1103
Author(s):  
Tian De Jin ◽  
Lan Hui Guo

In this paper, the behavior of composite stub columns under different loading conditions is studied using the finite element method. The accuracy of the theoretical method is validated by comparing with the experimental results. The behavior of specimen under different loading conditions is analyzed. Then, based on the finite element method, the comparison of mechanical behavior under three typical loading conditions is studied. The results show that the difference on bearing capacity will become larger with the increase of steel area to concrete area ratio. For the core concrete loaded specimen with lower steel area-to-concrete area ratio, whose bearing capacity is the lowest, but its ductility is very good. With the increase of the steel yield strength, the bearing capacity will increase evidently for specimen loaded simultaneously. While for the specimen with only core concrete loaded, the steel yield strength has little influence except increase of ductility.


2018 ◽  
Vol 64 (4) ◽  
pp. 89-103
Author(s):  
A. Nesterenko ◽  
G. Stolpovskiy ◽  
M. Nesterenko

AbstractThe actual load-bearing capacity of elements of a building system can be calculated by dynamic parameters, in particular by resonant frequency and compliance. The prerequisites for solving such a problem by the finite element method (FEM) are presented in the article. First, modern vibration tests demonstrate high accuracy in determination of these parameters, which reflects reliability of the diagnosis. Secondly, most modern computational complexes do not include a functional for calculating the load-bearing capacity of an element according to the input values of resonance frequencies. Thirdly, FEM is the basis for development of software tools for automating the computation process. The article presents the method for calculating flexural stiffness and moment of inertia of a beam construction system by its own frequencies. The method includes calculation algorithm realizing the finite element method.


2018 ◽  
Vol 28 (2) ◽  
pp. 5-17 ◽  
Author(s):  
Adam Bujarkiewicz ◽  
Jarosław Gajewski ◽  
Tomasz Janiak ◽  
Justyna Sobczak-Piąstka ◽  
Jacek Sztubecki ◽  
...  

Abstract The subject of the research is a footbridge across the river Brda in Bydgoszcz. The measurements of the footbridge displacements with the test load were undertaken. The paper presents the results of the measurements and compares them with the theoretical results obtained using the finite element method (FEM). On this basis, discrepancy between actual work of the structure and numerical simulations was found. Attempt to explain the reasons for the observed differences and direction of further research were included in the conclusions.


2013 ◽  
Vol 572 ◽  
pp. 209-212 ◽  
Author(s):  
Juan Carlos Pérez-Cerdán ◽  
Miguel Lorenzo ◽  
Carmen Blanco

Quantitative determination of stress concentrations factors (SCF) in interference fits joints is highly relevant since they are not given by the theory of pressure cylinders commonly used for designing them. We study the capability of using a full chamfered hub as a geometrical design for reducing SCF. Stresses distributions and stresses concentrations factors are analyzed as a function of parameters that define the hub geometry with the aim of optimizing the design of proposed modified hubs. To achieve this goal, diverse numerical simulations by means of the finite element method (FEM) were carried out in order to quantitatively estimate the stress state existing at hub-shaft interface.


Author(s):  
Yuri Kligerman ◽  
Izhak Etsion ◽  
Yuri Kadin

The process of unloading an elastic-plastic loaded sphere in contact with a rigid flat is studied by the Finite Element Method. The sphere material is assumed isotropic with elastic-linear hardening. The numerical simulations cover a wide range of loading interference deformation of various values of Young’s modulus and Poisson ratios of the sphere material. The contact loads, stresses, and deformations in the sphere during both loading and unloading, are calculated for the range of interferences. Empirical dimensionless expressions are presented for the unloading load-deformation relation, the residual axial displacement and the residual curvature of the sphere after complete unloading.


2010 ◽  
Vol 159 ◽  
pp. 157-162
Author(s):  
Sabina Cherneva ◽  
Milko Yordanov ◽  
Dimitar Stoychev ◽  
Rumen Iankov

A hybrid experimental-numerical approach, which combines microindentation experiments (where we measure the diagonal of the residual imprint after unloading) and numerical simulations by means of the finite-element method has been developed. The investigated materials in the present work are electrochemically deposited on brass substrates chromium and copper films with known thickness and unknown mechanical properties. Mechanical properties of the brass (CuZn36) substrate are known. Vickers’ microindentation experiments were carried out on the films and as a result the experimental load-displacement curves were obtained. After that the process of microindentation was modelled numerically by means of the finite-element method. Numerically obtained load-displacement curves were compared with the experimental curves. The results show good coincidence between numerical and experimental curves. Additionally it was realized nanoindentation experiment of thin copper film and these two methods (nanoindentation experiment and hybrid experimental-numerical method which combines experiment of microindentation and numerical simulations) for determination of mechanival properties of thin copper films were compared. Results obtained by means of the afore-mentioned two methods almost coincide but the second method is cheaper and gives more information about material properties of the film than the first method. It is shown that the second method is preferable to determine the mechanical properties of thin metal films.


Sign in / Sign up

Export Citation Format

Share Document