scholarly journals Hydraulic Vibration and Possible Exciting Sources Analysis in a Hydropower System

2021 ◽  
Vol 11 (12) ◽  
pp. 5529
Author(s):  
Aili Shen ◽  
Yimin Chen ◽  
Jianxu Zhou ◽  
Fei Yang ◽  
Hongliang Sun ◽  
...  

To understand the hydraulic vibration characteristics in a traditional hydropower system and identify possible exciting sources that may induce serious hydraulic vibrations in the flow passage, experimental tests and numerical calculations were conducted for different operating conditions. The experimental results show that the pressure fluctuations are mainly related to the vortex rope phenomena in the draft tube, and the dominant frequency of pressure fluctuation is 0.2~0.4 times the runner rotational frequency (fn). The numerical results show all the attenuating factors are negative, which indicates the system itself is stable on the condition that all the hydraulic elements have steady operating performance. The free vibration analyses confirm that the frequency range of the vortex rope in the draft tube partly overlaps the natural frequencies of the hydropower system. Apart from the vortex rope, the runner rotational frequency is another common frequency that is approximately equal to the frequency of the 10th vibration mode. From the vibration mode shapes, it is inferred that a small disturbance in its frequency close or equal to a specific natural frequency of the vibration mode could induce large pressure oscillations in the tail tunnel. In light of the system’s response to different forcing frequencies, the vortex rope formed under off-design conditions and runner rotational frequency is verified to be the potential exciting source of a traditional hydropower system, and the frequency 0.2 fn is much more dangerous than other disturbances to the system.

Energies ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1734
Author(s):  
Xing Zhou ◽  
Changzheng Shi ◽  
Kazuyoshi Miyagawa ◽  
Hegao Wu ◽  
Jinhong Yu ◽  
...  

Under the circumstances of rapid expansion of diverse forms of volatile and intermittent renewable energy sources, hydropower stations have become increasingly indispensable for improving the quality of energy conversion processes. As a consequence, Francis turbines, one of the most popular options, need to operate under off-design conditions, particularly for partial load operation. In this paper, a prototype Francis turbine was used to investigate the pressure fluctuations and hydraulic axial thrust pulsation under four partial load conditions. The analyses of pressure fluctuations in the vaneless space, runner, and draft tube are discussed in detail. The observed precession frequency of the vortex rope is 0.24 times that of the runner rotational frequency, which is able to travel upstream (from the draft tube to the vaneless space). Frequencies of both 24.0 and 15.0 times that of the runner rotational frequency are detected in the recording points of the runner surface, while the main dominant frequency recorded in the vaneless zone is 15.0 times that of the runner rotational frequency. Apart from unsteady pressure fluctuations, the pulsating property of hydraulic axial thrust is discussed in depth. In conclusion, the pulsation of hydraulic axial thrust is derived from the pressure fluctuations of the runner surface and is more complicated than the pressure fluctuations.


2009 ◽  
Vol 131 (8) ◽  
Author(s):  
Jorge Arpe ◽  
Christophe Nicolet ◽  
François Avellan

The complex three-dimensional unsteady flow developing in the draft tube of a Francis turbine is responsible for pressure fluctuations, which could prevent the whole hydropower plant from operating safely. Indeed, the Francis draft tube is subjected to inlet swirling flow, divergent cross section, and the change of flow direction. As a result, in low discharge off-design operating conditions, a cavitation helical vortex, so-called the vortex rope develops in the draft tube and induces pressure fluctuations in the range of 0.2–0.4 times the runner frequency. This paper presents the extensive unsteady wall pressure measurements performed in the elbow draft tube of a high specific speed Francis turbine scale model at low discharge and at usual plant value of the Thoma cavitation number. The investigation is undertaken for operating conditions corresponding to low discharge, i.e., 0.65–0.85 times the design discharge, which exhibits pressure fluctuations at surprisingly high frequency value, between 2 and 4 times the runner rotation frequency. The pressure fluctuation measurements performed with 104 pressure transducers distributed on the draft tube wall, make apparent in the whole draft tube a fundamental frequency value at 2.5 times the runner frequency. Moreover, the modulations between this frequency with the vortex rope precession frequency are pointed out. The phase shift analysis performed for 2.5 times the runner frequency enables the identification of a pressure wave propagation phenomenon and indicates the location of the corresponding pressure fluctuation excitation source in the elbow; hydroacoustic waves propagate from this source both upstream and downstream the draft tube.


2019 ◽  
Vol 11 (1) ◽  
pp. 168781401882446 ◽  
Author(s):  
Xing Zhou ◽  
He-gao Wu ◽  
Chang-zheng Shi

An improved method for preventing vortex rope formation and alleviating the associated pressure fluctuations in turbine draft tubes is investigated using baffles in the draft tube to hinder the swirling flow emerging from a Francis turbine runner. A strong swirl produces flow instabilities and pressure fluctuations. Partial load operating conditions at the rated water head and three flow rates are taken into consideration. It is demonstrated using a computational fluid dynamics simulation that this method effectively eliminates the vortex rope, particularly when using four baffles. The amplitude of the pressure pulsation in the draft tube modified with four baffles was 0.42 times that in a traditional draft tube. The baffles were found to reduce the tangential velocity of the flow in the draft tube and consequently hinder the development of the fierce swirling flow. This type of decrease is more significant compared to the gradual decay due to viscous effects of the solid wall in a traditional draft tube. The conclusion was verified by the results of experiments conducted using a novel device. The measured increase in turbine efficiency exceeded 3% at the evaluated partial loading point, indicating improved economic performance of the turbine.


Processes ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 1182
Author(s):  
Seung-Jun Kim ◽  
Yong Cho ◽  
Jin-Hyuk Kim

Under low flow-rate conditions, a Francis turbine exhibits precession of a vortex rope with pressure fluctuations in the draft tube. These undesirable flow phenomena can lead to deterioration of the turbine performance as manifested by torque and power output fluctuations. In order to suppress the rope with precession and a swirl component in the tube, the use of anti-swirl fins was investigated in a previous study. However, vortex rope generation still occurred near the cone of the tube. In this study, unsteady-state Reynolds-averaged Navier–Stokes analyses were conducted with a scale-adaptive simulation shear stress transport turbulence model. This model was used to observe the effects of the injection in the draft tube on the unsteady internal flow and pressure phenomena considering both active and passive suppression methods. The air injection affected the generation and suppression of the vortex rope and swirl component depending on the flow rate of the air. In addition, an injection level of 0.5%Q led to a reduction in the maximum unsteady pressure characteristics.


Author(s):  
P. Pennacchi ◽  
P. Borghesani ◽  
S. Chatterton ◽  
A. Vania

Design of hydraulic turbines has often to deal with hydraulic instability. It is well-known that Francis and Kaplan types present hydraulic instability in their design power range. Even if modern CFD tools may help to define these dangerous operating conditions and optimize runner design, hydraulic instabilities may fortuitously arise during the turbine life and should be timely detected in order to assure a long-lasting operating life. In a previous paper, the authors have considered the phenomenon of helical vortex rope, which happens at low flow rates when a swirling flow, in the draft tube conical inlet, occupies a large portion of the inlet. In this condition, a strong helical vortex rope appears. The vortex rope causes mechanical effects on the runner, on the whole turbine and on the draft tube, which may eventually produce severe damages on the turbine unit and whose most evident symptoms are vibrations. The authors have already shown that vibration analysis is suitable for detecting vortex rope onset, thanks to an experimental test campaign performed during the commissioning of a 23 MW Kaplan hydraulic turbine unit. In this paper, the authors propose a sophisticated data driven approach to detect vortex rope onset at different power load, based on the analysis of the vibration signals in the order domain and introducing the so-called “residual order spectrogram”, i.e. an order-rotation representation of the vibration signal. Some experimental test runs are presented and the possibility to detect instability onset, especially in real-time, is discussed.


2018 ◽  
Vol 180 ◽  
pp. 02090 ◽  
Author(s):  
Pavel Rudolf ◽  
Jiří Litera ◽  
Germán Alejandro Ibarra Bolanos ◽  
David Štefan

Vortex rope, which induces substantial pressure pulsations, arises in the draft tube (diffuser) of Francis turbine for off-design operating conditions. Present paper focuses on mitigation of those pulsations using active water jet injection control. Several modifications of the original Susan-Resiga’s idea were proposed. All modifications are driven by manipulation of the shear layer region, which is believed to play important role in swirling flow instability. While some of the methods provide results close to the original one, none of them works in such a wide range. Series of numerical experiments support the idea that the necessary condition for vortex rope pulsation mitigation is increasing the fluid momentum along the draft tube axis.


Author(s):  
Muhannad Altimemy ◽  
Justin Caspar ◽  
Alparslan Oztekin

Abstract Computational fluid dynamics simulations are conducted to characterize the spatial and temporal characteristics of the flow field inside a Francis turbine operating in the excess load regime. A high-fidelity Large Eddy Simulation (LES) turbulence model is applied to investigate the flow-induced pressure fluctuations in the draft tube of a Francis Turbine. Probes placed alongside the wall and in the center of the draft tube measure the pressure signal in the draft tube, the pressure over the turbine blades, and the power generated to compare against previous studies featuring design point and partial load operating conditions. The excess load is seen during Francis turbines in order to satisfy a spike in the electrical demand. By characterizing the flow field during these conditions, we can find potential problems with running the turbine at excess load and inspire future studies regarding mitigation methods. Our studies found a robust low-pressure region on the edges of turbine blades, which could cause cavitation in the runner region, which would extend through the draft tube, and high magnitude of pressure fluctuations were observed in the center of the draft tube.


2014 ◽  
Vol 81 (6) ◽  
Author(s):  
Hosein Foroutan ◽  
Savas Yavuzkurt

Numerical simulations and analysis of the vortex rope formation in a simplified draft tube of a model Francis turbine are carried out in this paper, which is the first part of a two-paper series. The emphasis of this part is on the simulation and investigation of flow using different turbulence closure models. Two part-load operating conditions with same head and different flow rates (91% and 70% of the best efficiency point (BEP) flow rate) are considered. Steady and unsteady simulations are carried out for axisymmetric and three-dimensional grid in a simplified axisymmetric geometry, and results are compared with experimental data. It is seen that steady simulations with Reynolds-averaged Navier–Stokes (RANS) models cannot resolve the vortex rope and give identical symmetric results for both the axisymmetric and three-dimensional flow geometries. These RANS simulations underpredict the axial velocity (by at least 14%) and turbulent kinetic energy (by at least 40%) near the center of the draft tube, even quite close to the design condition. Moving farther from the design point, models fail in predicting the correct levels of the axial velocity in the draft tube. Unsteady simulations are performed using unsteady RANS (URANS) and detached eddy simulation (DES) turbulence closure approaches. URANS models cannot capture the self-induced unsteadiness of the vortex rope and give steady solutions while DES model gives sufficient unsteady results. Using the proper unsteady model, i.e., DES, the overall shape of the vortex rope is correctly predicted and the calculated vortex rope frequency differs only 6% from experimental data. It is confirmed that the vortex rope is formed due to the roll-up of the shear layer at the interface between the low-velocity inner region created by the wake of the crown cone and highly swirling outer flow.


2019 ◽  
Vol 142 (1) ◽  
Author(s):  
Xianghao Zheng ◽  
Yuning Zhang ◽  
Jinwei Li ◽  
Yuning Zhang

Abstract During the spin-no-load mode, vibrational performance of the reversible pump turbine is an important criterion for the evaluation of the operational performances of the power station. In the present paper, the influences of rotational speed variations on the vibrational performances of the whole unit (including the top cover, the upper, and the lower brackets) are experimentally investigated with discussions of their sources and propagation characteristics. According to the whole vibrational levels and the dominant frequencies of the vibration signals obtained at the top cover, the investigated cases with different rotational speeds could be divided into three partitions with their main characteristics given as follows. In the first partition (with low rotational speeds), the vibrational level is quite limited, and its source is the pressure fluctuation generated by the swirling vortex rope in the draft tube. In the second partition (with medium rotational speeds), the vibrational level gradually increases and its source is the mechanical aspects of the impeller rotation. In the third partition (with high rotational speeds), the vibrational level is prominent with a prominent swirling vortex rope in the draft tube and intensive rotor–stator interactions in the vaneless space (VS). For the vibrations of the upper and the lower brackets, the vibrations mainly originate from the mechanical aspects of the impeller rotation and the amplitudes of the dominant frequency also increase with the increment of the rotational speed. Finally, differences between the vibrational performances of the spin-no-load mode and the generating mode are discussed.


Author(s):  
Muhannad Altimemy ◽  
Justin Caspar ◽  
Alparslan Oztekin

Abstract The performance of a pump-turbine under partial flow rates, 85%, 75%, and 65%, is studied using the LES model. The power signal, velocity, vorticity, and pressure field is presented over the blades and throughout the draft tube. Pressure fluctuations are probed at various locations over the wall of the draft tube. Examining the flow field in the blade region can provide further insights into the system performance. Flow-induced pressure fluctuations can disrupt system stability. For this turbine, a strong swirling region is observed around the draft tube walls, causing pressure fluctuations. The size and intensity of this region decrease with the flow rate. A vortex rope is present in all cases. At the design point, the strength is constant throughout the draft tube. However, at partial load, the rope is weakened along the draft tube. Between the region dominated by the vortex rope and the wall, there is a swirling shear layer, which moves closer to the wall as the flow rate decreases. Both the magnitude of pressure fluctuations at the wall and the pressure difference over the blade decrease with the flow rate. The decreased pressure differences over the blade represent less power produced, and the decline in fluctuation magnitude at the wall represents more system stability. For this turbine, there appears to be a trade-off between power and strength of pressure fluctuations.


Sign in / Sign up

Export Citation Format

Share Document