scholarly journals On the Use of Infrared Thermography for the Estimation of Melting Enthalpy

2021 ◽  
Vol 11 (13) ◽  
pp. 5915
Author(s):  
Clément Mailhé ◽  
Marie Duquesne ◽  
Elena Palomo del Barrio ◽  
Alexandre Godin

A calorimetry method based on infrared thermography is showing promise for material screening, allowing the simultaneous detection of phase transitions of multiple samples at a time, hence enabling the establishment of phase diagrams in a record time. The working principle of this method is similar to the one of Differential Thermal Analysis. Therefore, this work aims at identifying if the melting enthalpy of materials could be estimated on the same basis using infrared thermography. In this work, the melting of six eutectic mixtures of fatty acids is estimated under three considerations. The results are compared to Differential Scanning Calorimetry measurements and literature data. The accuracy of the method is discussed and improvements are proposed.

2016 ◽  
Vol 36 (8) ◽  
pp. 853-860 ◽  
Author(s):  
Vahabodin Goodarzi ◽  
Zahed Ahmadi ◽  
Mohammad Reza Saeb ◽  
Farkhondeh Hemmati ◽  
Mehdi Ghaffari ◽  
...  

Abstract Since polyethylene (PE) has been widely accepted for the production of high-pressure fluid conveying pipelines, studies devoted to weldability of PE connections were always of major importance. In this study, two industrial PE grades designed for pipe production, namely PE80 and PE100, were injection molded, cut, and then welded as PE100-PE100, PE100-PE80, and PE80-PE80. The heat-welded joints were assessed by differential scanning calorimetry and tensile measurements. The results obtained from thermal and mechanical analyses were compared with equivalents for aged samples. Thermal analysis revealed that the melting point of the PE100-PE100 sample is obviously larger than the one for the PE80-PE80 joint, for the PE80 chains deteriorate the crystallization of PE100. Further, the PE80-PE80 sample showed the lowest lamellar thickness and crystalline molecular weight among the studied joints. The aging process was found to increase lamellar thickness and molecular weight, though in the PE100-PE100 sample such quantities very limitedly increased. The yield stress of aged joints was higher than that for just-prepared samples, while an inverse trend was seen for strain at break. From a practical viewpoint, the PE100-PE100 welds offer better properties.


1992 ◽  
Vol 22 (9) ◽  
pp. 1305-1309
Author(s):  
Cecil Stushnoff ◽  
Richard W. Tinus ◽  
Virgil D. Esensee

Differential thermal analysis is used to detect low-temperature exotherms, the nucleation of supercooled aqueous fractions, indicative of lethal freezing temperature in certain plant tissues. However, in plant tissues that do not supercool at low temperatures, there has been no analytical technique to detect events during lethal freezing. Simultaneous detection of ultrasonic emissions and differential thermal analysis exotherms provides a method to determine the lethal freezing temperature in lateral buds of Douglas-fir (Pseudotsugamenziesii (Mirb.) Franco) seedlings in the nonhardy and in the hardy condition. Ultrasonic emissions were detected in buds that supercooled at low temperatures and in those that did not. Simultaneous detection of ultrasonic emissions and differential thermal analysis is more sensitive than differential scanning calorimetry. Neither the precise source nor the nature of molecular perturbations associated with the release of ultrasonic emissions during freezing injury is known.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Nurul Fatahah Asyqin Zainal ◽  
Jean Marc Saiter ◽  
Suhaila Idayu Abdul Halim ◽  
Romain Lucas ◽  
Chin Han Chan

AbstractWe present an overview for the basic fundamental of thermal analysis, which is applicable for educational purposes, especially for lecturers at the universities, who may refer to the articles as the references to “teach” or to “lecture” to final year project students or young researchers who are working on their postgraduate projects. Description of basic instrumentation [i.e. differential scanning calorimetry (DSC) and thermogravimetry (TGA)] covers from what we should know about the instrument, calibration, baseline and samples’ signal. We also provide the step-by-step guides for the estimation of the glass transition temperature after DSC as well as examples and exercises are included, which are applicable for teaching activities. Glass transition temperature is an important property for commercial application of a polymeric material, e.g. packaging, automotive, etc. TGA is also highlighted where the analysis gives important thermal degradation information of a material to avoid sample decomposition during the DSC measurement. The step-by-step guides of the estimation of the activation energy after TGA based on Hoffman’s Arrhenius-like relationship are also provided.


Polymers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1686
Author(s):  
Andrey Galukhin ◽  
Roman Nosov ◽  
Ilya Nikolaev ◽  
Elena Melnikova ◽  
Daut Islamov ◽  
...  

A new rigid tricyanate ester consisting of seven conjugated aromatic units is synthesized, and its structure is confirmed by X-ray analysis. This ester undergoes thermally stimulated polymerization in a liquid state. Conventional and temperature-modulated differential scanning calorimetry techniques are employed to study the polymerization kinetics. A transition of polymerization from a kinetic- to a diffusion-controlled regime is detected. Kinetic analysis is performed by combining isoconversional and model-based computations. It demonstrates that polymerization in the kinetically controlled regime of the present monomer can be described as a quasi-single-step, auto-catalytic, process. The diffusion contribution is parameterized by the Fournier model. Kinetic analysis is complemented by characterization of thermal properties of the corresponding polymerization product by means of thermogravimetric and thermomechanical analyses. Overall, the obtained experimental results are consistent with our hypothesis about the relation between the rigidity and functionality of the cyanate ester monomer, on the one hand, and its reactivity and glass transition temperature of the corresponding polymer, on the other hand.


Author(s):  
Kinga Tamási ◽  
Kálmán Marossy

AbstractThe paper deals with the study of seven selected natural plant oils. Differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA) and thermally stimulated discharge (TSD) methods were used. It has been found that most of the oils tested are in a glassy state at low temperature and have multiple transitions in the low temperature range. DSC shows complex melting-like processes or glass transition. For both DMA and TSD, the scaffold supportive method was used and found as a suitable one. DMA and TSD proved more sensitive than DSC and revealed at least two transitions between − 120 and − 40 °C. In the case of three oils (argan, avocado and sunflower), current reversal was observed by TSD; this symptom cannot be fully explained at the moment.


Polymers ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 270
Author(s):  
Evgeniy V. Belukhichev ◽  
Vera E. Sitnikova ◽  
Evgenia O. Samuylova ◽  
Mayya V. Uspenskaya ◽  
Daria M. Martynova

Polymeric packaging materials are one of the factors of environmental pollution. Reducing the environmental burden is possible by increasing the environmental friendliness of packaging materials. In this work, we study polymer films based on polyvinyl chloride (PVC) with a copolymer of 3-hydroxybutyrate with 3-hydroxyhexanoate P (3-GB) (3-GG) with different component ratios. The process of processing blends in the process of obtaining a packaging film is considered. The optical characteristics of the obtained films are determined. Thermal analysis of the obtained films was carried out using the differential scanning calorimetry (DSC), TGA, and thermomechanical analysis (TMA) methods. The degree of gelling of the resulting mixture was determined. It is shown that PHB has miscibility with PVC.


2012 ◽  
Vol 111 (3) ◽  
pp. 1707-1716 ◽  
Author(s):  
Salaam Saleh ◽  
Druthiman Reddy Mantheni ◽  
Manik Pavan Kumar Maheswaram ◽  
Susan Moreno-Molek ◽  
Tobili Sam-Yellowe ◽  
...  

2021 ◽  
Vol 882 ◽  
pp. 21-27
Author(s):  
Seyed Veghar Seyedmohammadi ◽  
Amin Radi ◽  
Guney Guven Yapici

In the present work, the effects of artificial aging treatment on the transformation temperatures and hardness of Cu-Al-Mn shape memory alloy have been investigated. The aging processes have been performed on the one-time re-melted and 90% rolled samples. Differential scanning calorimetry reveals that reverse transformation is present for the re-melted sample which is aged at 400°C. However, in 90% rolled condition, this transformation takes place at 200°C and 300°C. Hardness examination shows that the aged specimens possess higher values in hardness in comparison to un-aged samples at all studied temperatures. Although, the peak-aged condition was demonstrated at 300°C for the re-melted sample, the rolled sample displayed increased hardness levels up to 500°C. Based on the DSC measurements and microstructural observations, it can be asserted that the thermo-mechanical processing including rolling plus aging at 300°C provides favorable transformation characteristics for shape memory behavior.


2010 ◽  
Vol 46 (1) ◽  
pp. 129-134 ◽  
Author(s):  
Mariana Mandelli de Almeida ◽  
Cibele Rosana Ribeiro de Castro Lima ◽  
Joyce Santos Quenca-Guillen ◽  
Elder Moscardini Filho ◽  
Lucildes Pita Mercuri ◽  
...  

In view of the increase in the number of cosmetic preparations containing antioxidant vitamins, chiefly, due to their action in preventing the process of skin aging, there is a need to develop pre-formulation studies and to validate analytical methods in order to obtain high quality products. Thus, the objective of this research was to evaluate and compare the thermal behavior of tocopheryl acetate and ascorbyl tetraisopalmitate as raw materials, and incorporated into a base cream. Thermogravimetry (TG / DTG) and differential scanning calorimetry (DSC) were used for this purpose. Both vitamins were found to be stable up to 250ºC. The base cream (placebo) and the sample (base cream containing the vitamins) presented different weight loss. Thermal analysis has shown itself to be an excellent tool for the characterization of these vitamins and can be used in routine analysis for quality control of this type of cosmetic formulation.


2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Fabiola Navarro-Pardo ◽  
Ana L. Martínez-Hernández ◽  
Victor M. Castaño ◽  
José L. Rivera-Armenta ◽  
Francisco J. Medellín-Rodríguez ◽  
...  

Carbon nanotubes (CNTs) and graphene were used as reinforcing fillers in nylon 6,6 in order to obtain nanocomposites by using an injection moulding process. The two differently structured nanofillers were used in their pristine or reduced form, after oxidation treatment and after amino functionalisation. Three low nanofiller contents were employed. Crystallisation behaviour and perfection of nylon 6,6 crystals were determined by differential scanning calorimetry and wide angle X-ray diffraction, respectively. Crystallinity was slightly enhanced in most samples as the content of the nanofillers was increased. The dimensionality of the materials was found to provide different interfaces and therefore different features in the nylon 6,6 crystal growth resulting in improved crystal perfection. Dynamical, mechanical analysis showed the maximum increases provided by the two nanostructures correspond to the addition of 0.1 wt.% amino functionalised CNTs, enhancing in 30% the storage modulus and the incorporation of 0.5 wt.% of graphene oxide caused an increase of 44% in this property. The latter also provided better thermal stability when compared to pure nylon 6,6 under inert conditions. The superior properties of graphene nanocomposites were attributed to the larger surface area of the two-dimensional graphene compared to the one-dimensional CNTs.


Sign in / Sign up

Export Citation Format

Share Document