scholarly journals Application of Gas Foil Bearings in China

2021 ◽  
Vol 11 (13) ◽  
pp. 6210
Author(s):  
Yu Hou ◽  
Qi Zhao ◽  
Yu Guo ◽  
Xionghao Ren ◽  
Tianwei Lai ◽  
...  

Gas foil bearing has been widely used in high-speed turbo machinery due to its oil-free, wide temperature range, low cost, high adaptability, high stability and environmental friendliness. In this paper, state-of-the-art investigations of gas foil bearings are reviewed, mainly on the development of the high-speed turbo machinery in China. After decades of development, progress has been achieved in the field of gas foil bearing in China. Small-scale applications of gas foil bearing have been realized in a variety of high-speed turbo machinery. The prospects and markets of high-speed turbo machinery are very broad. Various high-speed turbomachines with gas foil bearings have been developed. Due to the different application occasions, higher reliability requirements are imposed on the foil bearing technology. Therefore, its design principle, theory, and manufacturing technology should be adaptive to new application occasions before mass production. Thus, there are still a number of inherent challenges that must be addressed, for example, thermal management, rotor-dynamic stability and wear-resistant coatings.

2019 ◽  
Vol 11 (9) ◽  
pp. 168781401987536
Author(s):  
Wenjie Cheng ◽  
Zhikai Deng ◽  
Ling Xiao ◽  
Bin Zhong ◽  
Wenbo Duan

With a 10-kW, 120,000-r/min, ultra-high-speed permanent magnet synchronous motor taken as a prototype, experimental research is conducted on the rotor dynamic behaviours of a three-pad bidirectional gas foil bearing high-speed motor rotor system. Load-carrying properties of the three-pad bidirectional gas foil bearing are analysed, and natural frequencies of conical and parallel whirling modes of the elastically supported rotor are calculated based on an appropriate simplification to the stiffness and damping coefficients of the gas foil bearings. The prototype passes through a 90,000-r/min coast-down experiment. Experiments show that there are violent subsynchronous whirling motions that are evoked by the gas foil bearing–rotor system itself. The cause of shaft orbit drift is analysed, and the corresponding solution is put forward. The theoretical analysis and experimental results can offer a useful reference to the bearing–rotor system design of ultra-high-speed permanent magnet motors and its subsequent dynamic analysis.


Author(s):  
Kamal Kumar Basumatary ◽  
Karuna Kalita ◽  
Sashindra K. Kakoty ◽  
Seamus D. Garvey

Abstract The hybrid Gas Foil Bearings combining the Gas Foil Bearing and Active Magnetic Bearing is a possibility for application in high-speed turbomachinery and a few developments have been made in this context. As such, the cost of conventional Gas Foil Bearing increases due to its requirement of precise manufacturing method and the coating material for the top foil and bump foil. In case of Active Magnetic Bearing, the normal electrical arrangement includes a multiplicity of independently controlled current sources usually at least four drives per bearing which increases its cost. Therefore, the hybrid Gas Foil Bearing will have much higher cost. In this work, a new electrical arrangement for the electromagnetic actuators of the hybrid Gas Foil Bearing has been proposed. The new arrangement requires only two drives per bearing and the bias current has been provided (in the same set of windings) through a simple rectifier with small series choke and shunt capacitor. As the number of drives required is less, the proposed bearing will have low cost. Implementing the new approach, the force vectors are achieved using only two current-source drives whereas the usual conventional arrangement requires four such drives. Numerical simulations are performed to explore the capabilities of the low cost bearing.


Author(s):  
Hooshang Heshmat ◽  
Piotr Hryniewicz ◽  
James F. Walton ◽  
John P. Willis ◽  
Said Jahanmir

Compliant foil bearings offer many advantages over rolling element bearings in high-speed and high-temperature applications. However, implementation of foil bearings in these applications requires development of solid lubricant coatings that can survive the severe operating conditions encountered at high speeds and high temperatures. The objective of this paper is to present results on development of an advanced coating system for use with compliant foil bearings that permits higher operating speeds and temperatures. In order to evaluate the coating performance and to select the best coating combination for implementation, a number tests were conducted using a high-temperature, high-speed tribometer up to 810 °C. Inconel test substrates, representative of a portion of a foil bearing, were coated with several different Korolon™ coatings. The counterface disks were coated with four different hard coatings. The test results confirmed the excellent tribological behavior of Korolon™ coatings for high-speed high-temperature foil bearing applications. While the tribological behavior of Korolon™ coatings were determined to be a function of temperature, in most cases a maximum coefficient of friction less than 0.1 was observed during startup/shutdown periods. Subsequently, a foil journal bearing was designed and a composite Korolon™ coating was applied to the bearing top foil; and a dense chrome coating was applied to the journal surface. The foil bearing was installed in a turbojet engine and operated successfully to 54,000 rpm for over 70 start-stop cycles.


Author(s):  
Daejong Kim ◽  
Brian Nicholson ◽  
Lewis Rosado ◽  
Garry Givan

Foil bearings are one type of hydrodynamic air/gas bearings but with a compliant bearing surface supported by structural material that provides stiffness and damping to the bearing. The hybrid foil bearing (HFB) in this paper is a combination of a traditional hydrodynamic foil bearing with externally-pressurized air/gas supply system to enhance load capacity during the start and to improve thermal stability of the bearing. The HFB is more suitable for relatively large and heavy rotors where rotor weight is comparable to the load capacity of the bearing at full speed and extra air/gas supply system is not a major added cost. With 4,448N∼22,240N thrust class turbine aircraft engines in mind, the test rotor is supported by HFB in one end and duplex rolling element bearings in the other end. This paper presents experimental work on HFB with diameter of 102mm performed at the US Air force Research Laboratory. Experimental works include: measurement of impulse response of the bearing to the external load corresponding to rotor’s lateral acceleration of 5.55g, forced response to external subsynchronous excitation, and high speed imbalance response. A non-linear rotordynamic simulation model was also applied to predict the impulse response and forced subsynchronous response. The simulation results agree well with experimental results. Based on the experimental results and subsequent simulations, an improved HFB design is also suggested for higher impulse load capability up to 10g and rotordynamics stability up to 30,000rpm under subsynchronous excitation.


Author(s):  
Nguyen LaTray ◽  
Daejong Kim

This work presents the theoretical and experimental rotordynamic evaluations of a rotor–air foil bearing (AFB) system supporting a large overhung mass for high-speed application. The proposed system highlights the compact design of a single shaft rotor configuration with turbomachine components arranged on one side of the bearing span. In this work, low-speed tests up to 45 krpm are performed to measure lift-off speed and to check bearing manufacturing quality. Rotordynamic performance at high speeds is evaluated both analytically and experimentally. In the analytical approach, simulated imbalance responses are studied using both rigid and flexible shaft models with bearing forces calculated from the transient Reynolds equation along with the rotor motion. The simulation predicts that the system experiences small synchronous rigid mode vibration at 20 krpm and bending mode at 200 krpm. A high-speed test rig is designed to experimentally evaluate the rotor–air foil bearing system. The high-speed tests are operated up to 160 krpm. The vibration spectrum indicates that the rotor–air foil bearing system operates under stable conditions. The experimental waterfall plots also show very small subsynchronous vibrations with frequency locked to the system natural frequency. Overall, this work demonstrates potential capability of the air foil bearings in supporting a shaft with a large overhung mass at high speed.


Author(s):  
Sadanand Kulkarni ◽  
Soumendu Jana

High-speed rotating system development has drawn considerable attention of the researchers, in the recent past. Foil bearings are one of the major contenders for such applications, particularly for high speed and low load rotating systems. In foil bearings, process fluid or air is used as the working medium and no additional lubricant is required. It is known from the published literature that the load capacity of foil bearings depend on the operating speed, viscosity of the medium, clearance, and stiffness of the foil apart from the geometric dimensions of the bearing. In case of foil bearing with given dimensions, clearance governs the magnitude of pressure developed, whereas stiffness dictates the change in radial clearance under the generated pressure. This article deals with the effect of stiffness, clearance, and its interaction on the bump foil bearings load-carrying capacity. For this study, four sets of foil bearings of the same geometry with two levels of stiffness and clearance values are fabricated. Experiments are carried out following two factor-two level factorial design approach under constant load and in each case, the lift-off speed is measured. The experimental output is analyzed using statistical techniques to evaluate the influence of parameters under consideration. The results indicate that clearance has the maximum influence on the lift-off speed/ load-carrying capacity, followed by interaction effect and stiffness. A regression model is developed based on the experimental values and model is validated using error analysis technique.


Author(s):  
Tae Ho Kim ◽  
Luis San Andre´s

Gas foil bearings (GFBs) enable efficient, reliable and maintenance free operation of high-power-density microturbomachinery (< 200 kW). High speed rotors supported on bump-type GFBs, however, are prone to show large-amplitude subsynchronous motions albeit reaching limit cycle performance. Presently, commercial GFBs are simply modified to introduce a mechanical preload that induces a hydrodynamic wedge to generate more load support and direct stiffnesses. Three metal shims inserted under the bump strip layers and in contact with the bearing housing create a multiple lobe clearance profile at a very low cost. Shaft speed coastdown measurements reveal the rotordynamic performance of a rotor supported on original GBFs and (modified) shimmed GFBs. The later GFBs determine a raise in the rotor-bearing system natural frequency, as expected, and also act to delay the onset speed of large-amplitude subsynchronous motions. Predictions of imbalance response implementing linearized bearing force coefficients are in good agreement with measured amplitudes of synchronous response for both GFB configurations, original and modified.


1972 ◽  
Vol 94 (3) ◽  
pp. 211-220 ◽  
Author(s):  
L. Licht

Experiments and analysis, reported in detail in references [1] through [5], demonstrated that high-speed rotors, supported by foil bearings, were free from whirl-instability and sensitivity to excitation at frequency equal one half the speed of rotation. It was shown also that the foil bearing could accommodate thermal and geometrical distortions, combining this attribute with excellent wipe-wear characteristics and tolerance of particles. The present investigation was directed toward the solution of two important problems: (a) the reduction of foil bearing length without detriment to rotor performance, and (b) the elimination of the foil-lift system and attainment of multiple start-stops without the aid of external pressurization. A description of experimental methods, which lead to the realization of the foregoing objectives, is given.


1970 ◽  
Vol 92 (4) ◽  
pp. 650-659 ◽  
Author(s):  
L. Licht

A high-speed rotor, supported by gas-lubricated foil bearings, is free from self-excited whirl and displays no loss of load capacity when vibrated at frequency equal half the rotational speed [1]. It is demonstrated here that in addition to tolerance of geometrical imperfections, misalignment, and foreign particles [3, 4], the foil bearing performs well at elevated temperatures and accommodates appreciable temperature gradients. The foil bearing is endowed with superior wipe-wear characteristics, and the flexibility of the foil accounts not only for the stability of the foil bearing but also for its forgiveness with respect to distortion, contamination, and contact.


Author(s):  
Daniel J. Block ◽  
Mark B. Michelotti ◽  
Ramavarapu S. Sreenivas

AbstractThis paper describes the development of an embedded system whose purpose is to control the Novint Falcon as a robot, and to develop a control experiment that demonstrates the use the Novint Falcon as a robotic actuator. The Novint Falcon, which is a PC input device, is “haptic” in the sense that it has a force feedback component. Its relatively low cost compared with other platforms makes it a good candidate for academic application in robot modeling and control. An embedded system is developed to interface with the multiple motors and sensors present in the Novint Falcon, which is subsequently used to control three independent Novint Falcons for a “ballon- plate” experiment. The results show that the device is a viable solution for high-speed actuation of small-scale mechanical systems.


Sign in / Sign up

Export Citation Format

Share Document