scholarly journals Design and Implementation of a Lizard-Inspired Robot

2021 ◽  
Vol 11 (17) ◽  
pp. 7898
Author(s):  
Shunsuke Nansai ◽  
Yuki Ando ◽  
Hiroshi Itoh ◽  
Norihiro Kamamichi

The purpose of this paper is to design a lizard-inspired robot driven by a single actuator. Lizard-inspired robots in previous studies had the issue of slippage of their supporting legs. To overcome this issue, a lizard-inspired robot consisting of a four-bar linkage mechanism was designed. The purpose of this paper was achieved through three processes. The first process was kinematic analysis, where the turning angle and stride length of the robot were analyzed. The kinematic analysis results were verified via numerical simulations. The second process was the design and fabrication of the robot. For the robot’s design, both a shuffle-walking method utilizing a claw-shaped leg mechanism and a sliding-rod mechanism for equipping the actuator on the robot’s own coordinates were designed. The third process was experimental verification. The first experimental result was that the claw-shaped leg mechanism was capable of generating an 85.26 N difference in the static frictional force in the longitudinal direction. The other three experimental results were that the robot was capable of driving with 3.51%, 3.16%, and 3.53% error compared to the kinematic analyses, respectively.

Author(s):  
Yung Ting ◽  
Min-Sheng Shin ◽  
Hong-Yuan Chang

In this article, vibratory parts feeder widely used in industrial automation with the structure of a symmetric four-bar linkage mechanism driven by piezoelectric actuator is investigated. The dynamic modeling and simulation of the system as well as the driving controller are developed. Experiment is carried out to measure the practical acceleration and force of the vibratory platform. In comparison the experimental result with the analytical result, both outcomes are quite matched, which indicates their good accuracy. Driving control circuitry with feedback design is instrumental to provide steady output performance. Finally, optimum design to improve the transport speed and keep the parts in order is discussed.


Author(s):  
Darina Hroncová

Urgency of the research. The use of computers in technical practice leads to the extension of the possibility of solving mathematical models. This makes it possible to gradually automate complex calculations of equations of mathematical models. It is necessary to input the relevant inputs of the mathematical model, to build a simulation computer model and to monitor and evaluate the output results using a computer's output device. Target setting. The possibilities of modeling a four-bar linkage mechanism by classical analytical methods and methodsusing computer modeling are presented in this paper.The problem is to describe the creation of a computer model and to show the mathematical model and its solution in the classical ways. Actual scientific researches and issues analysis. The inspiration for the creation of the article was the study of the mechanisms in the work [1-3] and the study of other resources available in library and journal materials, as well as prepared study materials for students of Technical university Kosice. Uninvestigated parts of general matters defining. The question of building a real mechanism model. The possibilities to building a real model, based on the result of simulation. The research objective. The aim of this paper is to develop a functional model of the mechanism in ADAMS/View and Matlab and its complete kinematic analysis.The statement of basic materials.The task was to create a computer model in MSC Adams and Matlab and to perform a four-bar linkage mechanism kinematic analysis. At the same time the classical procedure of analytical methods of kinematic analysis was described. Kinematic сharacteristics of driven members and their selected points were determined. The movement of the parts of the mechanism in its significant points was analyzed. The results of the solution were shown in both programs in graphical form. Kinematic analysis was performed by both vector and graphical methods. Finally, the results with a graphical representation of parameters such as angular displacement, angular velocity and angular acceleration of mechanism members are presented in this work. The results of these solutions are created in the form of graphs. To ensure that the results do not differ from the model real, a good computer model gradually was created by its verification and modification, which is one of the advantages of MSC Adams. The practical applicability of the mathematical model was limited by the existence of an analytical solution. Conclusions. The development of computer technology has expanded the limit of solvability of mathematical models and made it possible to gradually automate the calculation of equations of mathematical models. In a computer model the auto-mated calculation can be treated as a real object sample. In various variations of calculation, we can monitor and measure the behavior of an object under different conditions, under the influence of different inputs. Graphical and vector methods were used for classical analytical methods. MSC Adams and Matlab were used for the automated calculations.


2015 ◽  
Vol 39 (3) ◽  
pp. 637-646
Author(s):  
Ren-Chung Soong

A hybrid-driven five-bar linkage mechanism with one input cycle corresponding to two output cycles is presented. The proposed linkage mechanism is driven by a constant-speed motor and a linear motor, respectively. The output link can generate two same required output cycles during a single input cycle, while the rotational input link rotates with a constant angular speed, and the linear input link follows a reciprocating motion along a specified linear guide fixed on the rotational input link. The configuration, displacement relationship between the input and output links, and conditions of mobility of this proposed mechanism were studied, and a kinematic analysis was performed. The selection of the instantaneous motion trajectory of the linear input link and an optimal dimensional synthesis are also described. An example is provided to verify the feasibility and effectiveness of this methodology.


Author(s):  
Hubertus v. Stein ◽  
Heinz Ulbrich

Abstract Due to the elasticity of the links in modern high speed mechanisms, increasing operating speeds often lead to undesirable vibrations, which may render a required accuracy unattainable or, even worse, lead to a failure of the whole process. The dynamic effects e.g. may lead to intolerable deviations from the reference path or even to the instability of the system. Instead of suppressing the vibration by a stiffer design, active control methods may greatly improve the system performance and lead the way to a reduction of the mechanism’s weight. We investigate a four-bar-linkage mechanism and show that by introducing an additional degree of freedom for a controlled actuator and providing a suitable control strategy, the dynamically induced inaccuracies can be substantially reduced. The modelling of the four-bar-linkage mechanism as a hybrid multi body system and the modelling of the complete system (including the actuator) is briefly explained. From the combined feedforward-feedback optimal control approach presented in (v. Stein, Ulbrich, 1998) a time-varying output control law is derived that leads to a very good system performance for this linear discrete time-varying system. The experimental results show the effectiveness of the applied control strategy.


2021 ◽  
pp. 036354652110530
Author(s):  
Ian Peeters ◽  
Thomas Braeckevelt ◽  
Stijn Herregodts ◽  
Tanneke Palmans ◽  
Lieven De Wilde ◽  
...  

Background: Previous cadaveric kinematic studies on acromioclavicular injuries described mainly rotational differences during humerothoracic movements. Although isolated scapulothoracic movements are also often performed during activities of daily life and can be painful after acromioclavicular injuries, they have not been extensively studied. Further, the analysis of joint translations in kinematic studies has received little attention compared with biomechanical studies. Hypothesis: A kinematic analysis of joint motions in the intact shoulder versus a shoulder with Rockwood V injury would demonstrate a different pattern of kinematic alterations during humerothoracic and scapulothoracic movements. Study design: Descriptive laboratory study. Methods: A kinematic analysis was performed in 14 cadaveric shoulders during 3 humerothoracic passive movements (coronal and sagittal plane elevation and horizontal adduction) and 3 scapulothoracic passive movements (protraction, retraction, and shrug). An optical navigation system registered rotational motions in the sternoclavicular, scapulothoracic, and acromioclavicular joints in the intact and Rockwood V conditions. In the acromioclavicular joint, mediolateral, anteroposterior, and superoinferior translations were also analyzed. Results: In the Rockwood V condition, a significant increase in clavicular elevation in the sternoclavicular joint during both humerothoracic and scapulothoracic movements was demonstrated, whereas a significant decrease in posterior rotation of the clavicle occurred only during humerothoracic movements. In the scapulothoracic joint, the scapular position changed most significantly during protraction. In the acromioclavicular joint, the scapular tilting position was altered significantly during both humerothoracic and scapulothoracic movements, whereas the scapular rotational position changed only during coronal and sagittal plane elevation. The largest significant changes in the scapular protraction position were seen during protraction movement. Further, in the acromioclavicular joint there was a significant inferior translation of the scapula during all motions, a significant anterior translation during protraction and horizontal adduction, and a significant posterior translation during coronal plane elevation. Mediolaterally, the acromial end of the scapula slid further under the distal clavicle during protraction than during horizontal adduction. Conclusion: Large kinematic differences were seen between the intact state and a Rockwood V lesion not only during humerothoracic movements but also during scapulothoracic movements in the cadaveric model. During humerothoracic movements, rotational differences were mainly caused by alterations in the clavicular position. In contrast, during protraction, the alterations in the scapular position were the dominant factor. Clinical Relevance: This study demonstrates that protraction induces larger kinematic alterations than horizontal adduction in acromioclavicular injuries and can therefore be included in both clinical examination and kinematic analyses to identify lesions more clearly.


2016 ◽  
Vol 5 (1) ◽  
pp. 1-7
Author(s):  
Abdul Halim ◽  
Bayu Triwibowo

Drying phenomena of oil palm frond waste as agriculture waste was observed using simple batch oven dryer. The operation temperatures were 50, 80 and 120 C. The sample of oil palm frond was weighed periodically every 30 minutes. Moisture content, shrinkage phenomena and drying kinetic model were investigated to the difference operation temperature. Experimental result exhibited that temperature influent significantly to the drying rate. The water transport controlled by diffuse mechanism. Shrinkage occurred in radial direction and decreased the size to almost 65% from initial size. In longitudinal direction almost is not change of size.


2006 ◽  
Vol 3 (1) ◽  
pp. 77-80 ◽  
Author(s):  
Philip S.L Anderson ◽  
Mark W Westneat

Placoderms are a diverse group of armoured fishes that dominated the aquatic ecosystems of the Devonian Period, 415–360 million years ago. The bladed jaws of predators such as Dunkleosteus suggest that these animals were the first vertebrates to use rapid mouth opening and a powerful bite to capture and fragment evasive prey items prior to ingestion. Here, we develop a biomechanical model of force and motion during feeding in Dunkleosteus terrelli that reveals a highly kinetic skull driven by a unique four-bar linkage mechanism. The linkage system has a high-speed transmission for jaw opening, producing a rapid expansion phase similar to modern fishes that use suction during prey capture. Jaw closing muscles power an extraordinarily strong bite, with an estimated maximal bite force of over 4400 N at the jaw tip and more than 5300 N at the rear dental plates, for a large individual (6 m in total length). This bite force capability is the greatest of all living or fossil fishes and is among the most powerful bites in animals.


Author(s):  
L. Yuan ◽  
J. Rastegar

Abstract A new method for the analysis of the effects of structural flexibility on the dynamic behavior of mechanical systems is presented. The developed method is in most part based on “tracing” the “propagation” of the effects of the high frequency motion requirements on the dynamic response characteristics of machines with structural flexibilities, particularly those with closed-loop kinematic structures. The method considers the “filtering” action of structural elements with flexibility. Such filtering of higher frequency motions is shown to have a predictable effect on the steady state motion of such mechanical system. The main advantage of the developed method is that the effects of such flexibilities can be determined without the need to perform the usual dynamics modeling and computer simulations. The method is shown to be very simple and readily implementable. The method is applied to a four-bar linkage mechanism with a longitudinally flexible coupler link. The obtained results are shown to be highly accurate as compared to those obtained by computer simulation. The application of the method to systematic design of machines with structural flexibility for high speed and precision operation, optimal integration of smart (active) materials into the structure of such machines, and some related issues are discussed.


Symmetry ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1101 ◽  
Author(s):  
Yao Chen ◽  
Jiayi Yan ◽  
Jian Feng

In recent years, origami structures have been gradually applied in aerospace, flexible electronics, biomedicine, robotics, and other fields. Origami can be folded from two-dimensional configurations into certain three-dimensional structures without cutting and stretching. This study first introduces basic concepts and applications of origami, and outlines the common crease patterns, whereas the design of crease patterns is focused. Through kinematic analysis and verification on origami structures, origami can be adapted for practical engineering. The novel characteristics of origami structures promote the development of self-folding robots, biomedical devices, and energy absorption members. We briefly describe the development of origami kinematics and the applications of origami characteristics in various fields. Finally, based on the current research progress of crease pattern design, kinematic analysis, and origami characteristics, research directions of origami-inspired structures are discussed.


Sign in / Sign up

Export Citation Format

Share Document