scholarly journals Collapse Analysis of a Two-Span Reinforced Concrete Bridge Model

2021 ◽  
Vol 11 (19) ◽  
pp. 8935
Author(s):  
Yale Li ◽  
Zhouhong Zong ◽  
Bingwen Yang ◽  
Zhanghua Xia ◽  
Yuanzheng Lin ◽  
...  

The continuous girder bridge is the main type of small- and medium-sized bridges; however, it has poor collapse resistance and suffers frequent earthquake damage. In order to grasp its collapse mechanism and clarify the internal and external factors affecting its collapse resistance, a 1:3-scaled, two-span bridge model subjected to shaking table test research was taken as the research object. The factors such as seismic characteristics, multi-directional seismic coupling, span, pier height, and structural system type were analyzed to determine the influences on the collapse mode of the bridge. The numerical results showed that different ground motion characteristics led to different collapse modes. Vertical ground motion had little effect on the structural response of the bridge. The change of span and pier height significantly changed the collapse resistance. A seismic isolation design could improve the anti-collapse performance, but the collapse mode varied with the system. The final anti-collapse design suggestions could provide reference for the seismic reinforcement of existing continuous girder bridges and the seismic design of continuous girder bridges that will be constructed.

2012 ◽  
Vol 256-259 ◽  
pp. 1492-1495
Author(s):  
Xiao Yu Yan

To investigate the seismic response of long-span rigid frame bridges with high-pier, the shaking table test of a 1/10 scaled rigid frame bridge model is introduced in this paper. Details about test equipment, model design, test arrangement, input ground motion waves and test principle are provided. The response of bridge model under the seismic excitation included the uniform excitation and the multi-support excitation is observed. The influence of the soil-structure interaction on the bridge is considered through the real-time dynamic hybrid testing method. The impact effect for different ground motion input during the test is discussed. The influence of multi-support excitation, soil-structure interaction and impact effect on structural seismic responses are studied based on the test results. The isolation effectiveness and the damping effect are discussed as well.


2012 ◽  
Vol 446-449 ◽  
pp. 378-381
Author(s):  
Jian Min Jin ◽  
Ping Tan ◽  
Fu Lin Zhou ◽  
Yu Hong Ma ◽  
Chao Yong Shen

Mid-story isolation structure is developing from base isolation structures. As a complex structural system, the work mechanism of base isolation structure is not entirely appropriate for mid-story isolation structure, and the prolonging of structural natural period may not be able to decrease the seismic response of substructure and superstructure simultaneously. In this paper, for a four-story steel frame model, whose prototype first natural period is about 1s without seismic isolation design, the seismic responses and isolation effectiveness of mid-story isolation system with lead rubber bearing are studied experimentally by changing the location of isolation layer. Respectively, the locations of isolation layer are set at bottom of the first story, top of the first story, top of the second story and top of the third story. The results show that mid-story isolation can reduce seismic response in general, and substructure acceleration may be amplified.


1993 ◽  
Vol 20 (1) ◽  
pp. 107-119 ◽  
Author(s):  
S. F. Ng ◽  
M. S. Cheung ◽  
H. M. Hachem

To better understand the behaviour of curved box girder bridges in resisting eccentric design truck loads, and the influence of plan curvature on the structural response, a model study was conducted at the University of Ottawa. In this study, the elastic response of a curved composite box girder bridge model was evaluated experimentally and confirmed analytically using the finite element method. Analytical predictions of both vertical displacements and normal stresses at critical sections compared fairly well with those evaluated experimentally. The isoparametric thin shell element employed in the analysis proved to be versatile and provided an accurate representation of the various structural components of a curved box girder bridge. Despite the eccentric nature of the applied OHBDC design truck loads and the bridge plan curvature, it was evident that in resisting the applied live loads, the girders at critical sections share equal proportions of the applied bending moments. Key words: bridge, curved, cellular, composite, eccentric loads, static, linear, experimental, finite element.


Author(s):  
Kiyotaka Takito ◽  
Osamu Furuya ◽  
Hiroshi Kurabayashi ◽  
Kunio Sanpei

Abstract In Japan, most structures on the ground surface need seismic countermeasures because of frequently earthquakes. On the other hand, vibration isolation devices are applied to precision or important equipment in several facilities that dislikes vibration in order to reduce daily vibration. In general, vibration isolation devices are intended for high frequency and small amplitude range. However, it is difficult to cut off both vibration region caused by flying object collision and seismic motion with existing technologies. The authors propose insulation of equipment and vibration transmitted through the floor by floating equipment, and have. We have devised and built an air floating device that operates when a trigger input is applied to save the energy of this dynamically acting device. It was estimated by numerical calculation that the aero floating device keeps lifting stably in the condition with the air pressure in the auxiliary air chamber about 75 to 80 kPa. The performance specifications of the proposed device were verified from shaking table test. As a result, the effect of reducing the maximum acceleration by about 1/5 against the seismic motion of El Centro NS, Taft NS, Tohoku NS, and Hachinohe EW was confirmed by floating the mass on the frame assuming the equipment. From the obtained power spectrum diagram (PSD) of the response acceleration, it was confirmed that all frequency components up to 25 Hz is reduced by using proposed aero floating base isolation device.


2013 ◽  
Vol 353-356 ◽  
pp. 2221-2227
Author(s):  
Guang Hui Zhang

Rural buildings are subject to the most serious damage and the highest collapse ratio in earthquake disaster. It is urgent at present to develop seismic isolation technologies applicable to rural buildings under current rural economic conditions of China. Through comparing the existing domestic seismic isolation technologies in respects of the acquisition difficulty level, price and friction coefficient of material and the placement of sliding material, and analyzing the result of simulated shaking table test respectively with the gravel foundation isolation technology and the gravel sliding isolation technology, this paper points out matters needing attention during the development of seismic isolation technologies for rural buildings.


Author(s):  
Satoru Inaba ◽  
Takuya Anabuki ◽  
Kazutaka Shirai ◽  
Shuichi Yabana ◽  
Seiji Kitamura

This paper describes the dynamic damage test of a reinforced concrete (RC) wall structure with seismic isolation sysytem. It has been expected that seismically isolated structures are damaged in sudden when the accelerations of the structures exceed a certain level by hardening of the rubber bearings. However, the response behavior and the damage mode have not been observed by experimental test yet. So, shaking table tests were carried out at “E-Defense”, equipping the world’s largest shaking table, located at Miki City, Hyogo prefecture, Japan. The specimen was composed of an upper structure of 600 ton by weight and six lead-rubber bearings (LRBs) of 505 mm in diameter which provide both stiffness and hysteretic damping. The upper structure consisted of a RC mass and four RC walls with counter weight. The RC wall structure was designed so that the damage of the RC wall occurred between the shear force at the hardening of the rubber bearings and that at their breaking. The dimensions of the RC wall were 1600 × 800 × 100 mm (B × H × t). The reinforcement ratios were 2.46% in vertical by D13 (deformed reinforcing bar, 13 mm in diameter) and 1.0% in horizontal by D10. The shaking table test was conducted consecutively by increasing the levels up to 225% of tentative design earthquake motion. Consequently, because of the increase of the structural response by the hardening of the rubber bearings, the damage of the wall structure with seismic isolation system suddenly happened. In addition, the preliminary finite element analysis simulated the test results fairly well, which were the restoring force characteristics, the crack patterns of the RC wall structure and such.


2021 ◽  
Vol 2 (2) ◽  
Author(s):  
Kan Han ◽  
Chunxiao Xue

In order to reduce the damage of liquefaction of aeolian sand along the Sichuan-Tibet railway, the dynamic response characteristics of saturated aeolian sand in the study area were discussed by using shaking table test. The results show that the macroscopic characteristics of saturated aeolian sand in the study area are subsidence, water flow and fracture. The displacement time history shows that the surface displacement increases with increasing the input ground motion acceleration. When the acceleration is small (0.1g), the vibration in the soil layer has an obvious tendency to enlarge continuously from bottom to top. With the increase of the acceleration (0.2g), the amplification trend basically disappeared. When the acceleration increases to 0.3g, the ground motion increases first and then decreases.


Author(s):  
Osamu Furuya ◽  
Hiroshi Kurabayashi ◽  
Osamu Takahashi ◽  
Kunio Sanpei ◽  
Shoichi Sakamoto ◽  
...  

Natural period of architectural structure have been longer to be high-rise in recent years. Tuned Mass Damper (TMD) is applied for the structural response reduction in such a long period structure. In general since there are a lot of design cases using a guide rail for linear motion guide of the mass in TMD, the friction coefficient in assembled TMD becomes almost from 3/1000 to 5/1000. The friction coefficient leads an important problem in view point of performance design for long period structures because of that the friction force becomes a large compared with starting inertia force. In this study, new type TMD with air pressure floating technique has been examined to reduce a friction force for starting inertia force, and to set 0.01 m/s2 in starting acceleration as a performance target. This paper shows the evaluation results for fundamental performance from static loading test and shaking table test.


2013 ◽  
Vol 706-708 ◽  
pp. 472-477
Author(s):  
Jie Dong Zhan ◽  
Xin Tong Li ◽  
Yang Li

Abstract: The thesis is aimed to study the characteristics nonlinear seismic response of the isolated continuous girder bridges with LRB. Inorder to achieve the aim, force- deformation properties of the LRB is considered as bilinear first, the bouc-wen model is adopted to imitate the force nonlinear deformation behavior of LRB, and by using Finite element method, the motion equation of the Isolation system of continuous girder bridge is established, then some shaking table tests towards the model of isolated continuous girder bridges with LRB is done. On this basis of it, by comparing the experimental results and calculation results, such as the acceleration and displacement of deck, vertical force of bearing, and the relationship between the Isolation layer displacement and the Level force displacement of the Bearing, we can see that the difference between the analytical results and the experimental results are very small. The results show that the calculation method can analyze Nonlinear Seismic Response of isolated continuous girder bridges with LRB efficiently. But when the vertical earthquake component is larger ,whether the results of the Vertical tension are produced or not, designing the Rubber bearings should be considered.


Sign in / Sign up

Export Citation Format

Share Document