scholarly journals Identification for Abutment Stress by Drilling Cuttings

2021 ◽  
Vol 11 (20) ◽  
pp. 9467
Author(s):  
Jian Tan ◽  
Yunliang Tan ◽  
Zihui Wang ◽  
Yubao Zhang

The concentration of abutment pressure acting on coal seams induced by mining is a key factor to trigger rock burst. Understanding of abutment pressure or stress concentration is fundamental in preventing and controlling rock burst. The influence on abutment pressure fluctuation caused by the inhomogeneity of coal seams needs to be considered, but it is difficult to obtain by the present usual ways such as acoustic transmission, electromagnetic wave transmission, etc. In this article, the relationship between the amount of cuttings drilled in a coal seam and stress level was analyzed by considering the effect of drilling cutting expansion, and the drilling cutting test was carried out in Xinglongzhuang Coal Mine, Shandong Energy Ltd. It is found that the amount of cuttings drilled is positively related to the degree of stress concentration in both the plastic fracture zone and elastic zone. The amount of drilling cuttings is closely related to the roof weighting. In addition, the irregular fluctuation of drilling cuttings is an approximate map of distribution of stress concentration because of the non-uniformity of cracks and other defects in the coal seam. In order to meet the need of rock burst prevention by accurate pressure relief in high-stress zones, enough boreholes are needed.

2022 ◽  
Vol 2022 ◽  
pp. 1-10
Author(s):  
Zhihui Zhang ◽  
Yangyi Liu ◽  
Wenwen Zhu ◽  
Jian Liu ◽  
Tian Ma ◽  
...  

The control and prevention of rock burst in a steeply inclined coal seam are essential. In order to figure out the effects of filling and mining sequence on rock burst in the steeply inclined coal seam, B3+6 and B1+2 coal seams in Wudong coal mine are chosen as the research objects, and an in-house experiment system of similarity simulation is established in this study. Combined with numerical simulation, the characteristics of collapse, stress distribution, and displacement variations can be measured, which provide useful information to study the effects of the filling body and mining sequence on rock burst. Experimental results show that the key reason for rock burst in a steeply inclined coal seam is the stress concentration of the rock pillar between B3+6 and B1+2 coal seams instead of the stress-lever-effect of a deeper rock pillar. The filling body can support the middle rock pillar, share the geological structure stress in the horizontal and vertical direction, eliminate the stress concentration zone largely, and prevent the occurrence of rock burst. When multiple working faces are working, the opposite side of the coal seam should be mined first to release the energy in the rock in advance, thus preventing the rock burst effectively. The research results provide fundamental information for better understanding the reason for rock burst and preventing rock burst in the steeply inclined coal seam.


2010 ◽  
Vol 156-157 ◽  
pp. 207-210
Author(s):  
Zhi Jie Wen ◽  
Lian Jun Chen ◽  
Xiao Dong Zhao ◽  
Chuan Zhang

In order to effectively prevent the rock burst occurrence for mining patter with no pillar, the reason and its realization condition of rock burst were studied; the stope structure mechanics model with working face mining was built; four phases of rock burst occurrence with mining were proposed; the relationship between rock burst occurrence and abutment pressure law of development was analyzed, time-space coupling relationship of rock burst and its relevant information for rock burst control were obtained.


Energies ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 3451 ◽  
Author(s):  
Zuxun Zhang ◽  
Hongtu Wang ◽  
Bozhi Deng ◽  
Minghui Li ◽  
Dongming Zhang

Hydraulic fracturing is an effective technology for enhancing the extraction of reservoir methane, as proved by field experience and laboratory experiments. However, unlike conventional reservoirs, coal seams had high stress sensitivity and high anisotropy. Therefore, the efficiency of hydraulic fracturing in coal seams needs to be investigated. In this study, hydraulic fracturing was performed at Nantong mine in the southeast Sichuan basin, China. The field investigation indicated that the hydraulic fracturing could significantly enhance the methane extraction rate of boreholes ten times higher than that of normal boreholes in one of the minable coal seams (named #5 coal seam). The performance of hydraulic fracturing in three districts revealed that compared with south flank, the fluid pressure was higher and the injection rate was lower in north flank. The methane extraction rate of south flank was inferior to that of north flank. It indicated hydraulic fracturing had less effect on #5 coal seam in south flank. Moreover, the injection of high-pressure water in coal seams could also drive methane away from boreholes. The methane extraction rate of the test boreholes demonstrated the existence of methane enrichment circles after hydraulic fracturing. It indicated that hydraulic fracturing did act on #5 coal seam in south flank. However, due to the high stress sensitivity of coal seams and the high geo-stress of south flank, the induced artificial fractures in #5 coal seam might close with the decline of the fluid pressure that led to a sharp decline of the methane extraction rate.


2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Wan-rong Liu

The roof fracture is the main cause of coal mine roof accidents. To analyze the law of movement and caving of the roof rock stratum, the roof subsidence displacement, rock stratum stress, and the rock stratum movement law were analyzed by using the methods of the particle discrete element and similar material simulation test. The results show that (1) as the working face advances, regular movement and subsidence appears in the roof rock strata, and the roof subsidence curve forms a typical “U” shape. As the coal seam continues to advance, the maximum subsidence displacement remains basically constant, and the subsidence displacement curves present an asymmetric flat-bottomed distribution. (2) After the coal seam is mined, the overburden forms an arched shape force chain, and the arched strong chain is the path of the overburden transmission force. The farther away from the coal seam, the smaller the stress concentration coefficient is, but it is still in a high stress area, and the stress concentration position moves toward the middle area of the goaf. The stress concentration in front of the coal wall is the source of force that forms the abutment pressure. (3) Above the coal wall towards the goaf, a stepped fracture was formed in the roof rock stratum. The periodic fracture of the rock stratum is the main cause of the periodic weighting of the working face. Understanding the laws of rock movement and stress distribution is of great significance for guiding engineering practice and preventing the roof accidents.


Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-19
Author(s):  
Xingping Lai ◽  
Huicong Xu ◽  
Jingdao Fan ◽  
Zeyang Wang ◽  
Zhenguo Yan ◽  
...  

In order to explore the mechanism of coal pillar rock burst in the overlying coal body area, taking W1123 working face of Kuangou Coal Mine as the engineering background, the full mining stage of W1123 is simulated by FLAC3D. It is found that the high stress concentration area has appeared on both sides of the coal pillar when W1123 does not start mining. With the advance of the working face, the high stress concentration area forms X-shaped overlap. There is an obvious difference in the stress state between the coal pillar under the solid coal and the coal pillar under the gob in W1123. The concrete manifestation is that the vertical stress of the coal pillar below the solid coal is greater than the vertical stress of the coal pillar below the gob. The position of the obvious increase of the stress of the coal pillar in the lower part of the solid coal is ahead of the advancing position of the working face, and the position of the obvious increase of the stress of the lower coal pillar in the gob lags behind the advancing position of the working face. At the same time, in order to accurately reflect the true stress environment of coal pillars, the author conducted a physical similarity simulation experiment in the laboratory to study the local mining process of the W1123 working face, and it is found that under the condition of extremely thick and hard roof, the roof will be formed in the gob, the mechanical model of roof hinged structurer is constructed and analyzed, and the results show that the horizontal thrust of roof structure increases with the increase of rotation angle. With the development of mining activities, the self-stable state of the high stress balance in the coal pillar is easily broken by the impact energy formed by the sudden collapse of the key strata. Therefore, the rock burst of coal pillar in the overlying coal body area is the result of both static load and dynamic load. In view of the actual situation of the Kuangou Coal Mine, the treatment measures of rock burst are put forward from the point of view of the coal body and rock mass.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Zhihua Li ◽  
Ke Yang ◽  
Jianshuai Ji ◽  
Biao Jiao ◽  
Xiaobing Tian

A case study based on the 401103 fully mechanized caving face in the Hujiahe Coal Mine was carried out in this research to analyze the rock burst risks in a 54 m-wide coal pillar for roadway protection. Influencing factors of rock burst risks on the working face were analyzed. Stress distribution characteristics on the working face of the wide coal pillar for roadway protection were discussed using FLAC3D numerical simulation software. Spatial distribution characteristics of historical impact events on the working face were also investigated using the microseismic monitoring method. Results show that mining depth, geological structure, outburst proneness of coal strata, roof strata structure, adjacent mining area, and mining influence of the current working face are the main influencing factors of rock burst on the working face. Owing to the collaborative effects of front abutment pressure of the working face and lateral abutment pressure in the goaf, the coal pillar is in the ultimate equilibrium state and microseismic events mainly concentrate in places surrounding the coal pillars. Hence, wide coal pillars become the regions with rock burst risks on the working face. The working face adopts some local prevention technologies, such as pressure relief through presplitting blasting in roof, pressure relief through large-diameter pores in coal seam, coal seam water injection, pressure relief through large-diameter pores at bottom corners, and pressure relief through blasting at bottom corners. Moreover, some regional prevention technologies were proposed for narrow coal pillar for roadway protection, including gob-side entry, layer mining, and fully mechanized top-coal caving face with premining top layer.


2013 ◽  
Vol 807-809 ◽  
pp. 2393-2397
Author(s):  
Ai Qing Liu

The principle of roadway layout is in the low stress zone. Roadway will be difficult to support due to the lower seam face in the close multi-seam is affected by dynamic pressure of the upper seam face mining. The distribution of abutment pressure after the upper seam face mining were analyzed,concluded that: The layout of lower seam roadway should avoid the stress concentration area of residual coal pillar; Stress concentration of the coal pillar is related with mining order, and stress concentration degree is higher in the first mining side of the coal pillar; when the upper coal seam is gob, the layout of the roadway in the lower coal seam with the pattern of homodromous alternate interior layout will be easy to support.


2021 ◽  
Vol 9 ◽  
Author(s):  
Zhenhua Wu ◽  
Peng-Zhi Pan ◽  
Jianqiang Chen ◽  
Xudong Liu ◽  
Shuting Miao ◽  
...  

When studying the rock burst mechanism in subvertical extra-thick coal seams in the Wudong coal mine in Xinjiang, China, most studies focus on rock pillars, while the effect of the roof on rock bursts is usually ignored. In this paper, a rock burst mechanism in subvertical extra-thick coal seams under the control of a “roof-rock pillar” is proposed. A theoretical analysis is first performed to explain the effect of roof-rock pillar combinations on rock bursts in coal seams. Numerical modeling and microseismic analysis are implemented to further study the mechanism of rock burst. The main conclusions are as follows: 1) During the mining of the B3+6 coal seam, an obvious microseismic concentration phenomenon is found in both the roof and rock pillar of B3+6. The rock bursts exhibited obvious directionality, and its main failure characteristics are floor heave and sidewall heave, but there will also be some failures such as shoulder socket subsidence in some parts. 2) The stress transfer caused by rock pillar prying is the main reason for the large difference in rock burst occurrence near the vertical and extra thick adjacent coal seams under the same mining depth. 3) Under the same cantilever length, the elastic deformation energy of the roof is much greater than that of the rock pillar, which makes it easier to produce high-energy microseismic events. With an increasing mining depth, the roof will become the dominant factor controlling the occurrence of rock bursts. 4) The high-energy event produced by the rock mass fracture near the coal rock interface easily induces rock bursts, while the high-energy event produced by the fracture at the far end of the rock mass is less likely to induce rock burst. 5) Roof deformation extrusion and rock pillar prying provide high static stress conditions for the occurrence of rock bursts in the B3+6 coal seam. The superposition of the dynamic disturbance caused by roof and rock pillar failure and the high static stress of the coal seam is the main cause of rock burst in the B3+6 coal seam.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Heng Zhang ◽  
Tie Li ◽  
Zhenhua Ouyang ◽  
Su Liu ◽  
Haiyang Yi

Determining the parameters of boreholes drilled for relieving pressure in coal seams is the key preventing and controlling rock bursts in boreholes of large diameter. In this study, theoretical analysis, numerical simulation, literature research, and other analysis methods are applied to study the angles of elastic energy dissipation and stress transfer, the distribution law of the pressure relief area, and the areas of stress concentration, energy, stress, displacement, and plastic behavior of large-diameter pressure relief boreholes in coal seams under high-stress conditions. The results are then used to evaluate the relationship between large-diameter pressure relief boreholes and the borehole arrangement. The following results are obtained. (1) A large-diameter results in a large amount of elastic energy released by the surrounding coal, low residual elastic energy density, strong interaction between boreholes, large pressure relief range of the borehole, and high pressure relief efficiency. (2) The main evaluation factor of the borehole pressure relief effect is its thickness and stress concentration area; secondary evaluation is based on the areas of energy, displacement, stress, and plastic behavior. (3) Six evaluation index systems are established to evaluate the effects of borehole pressure relief, which are found to be the thicknesses of the borehole pressure relief area and stress concentration area, reduction degree of energy density, percentage of stress reduction, displacement, and penetration degree of the plastic area. (4) It is determined that when the diameters of the pressure relief boreholes are 100, 120, 180, and 200 mm, a single-row borehole arrangement is adopted; a three-pattern borehole arrangement is adopted with diameters of 140 and 160 mm. These research results can provide theoretical support in selecting reasonable borehole arrangements for pressure relief boreholes of different diameters.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Zhiqiang Wang ◽  
Peng Wang ◽  
Lei Shi ◽  
Wenyu Lv ◽  
Chao Wu ◽  
...  

Gob-side entry is an area where it is difficult to prevent and control the frequent occurrence of rock burst. Based on “Longwall Mining with Split-level Gateways” (LMSG), this paper puts forward the technology of preventing rock burst by a new gob-side entry (NCPG). The abutment pressure distribution of LMSG shows that the stress peak of solid coal is lower than the conventional panel, and the width of the limit equilibrium zone is also reduced by a small percentage. After the narrow coal pillar gob-side entry has been excavated, the peak stress in solid coal increases, and the width of the limit equilibrium zone decreases, so the practical stress concentration increases. However, the NCPG located in areas of lower stress. The peak stress in solid coal of the NCPG does not increase, but the width of the limit equilibrium zone increases, so the practical stress concentration decreases. NCPC makes the concentrated stress transfer into the deep coal body and plays the role of pressure avoidance. Compared with the narrow coal pillar gob-side entry, the NCPG reduces the energy stored in coal and rock masses and increases the energy consumption. It has significantly improved the regionality, initiative, safety, and timeliness of rock burst prevention in deep high-stress coal seam mining.


Sign in / Sign up

Export Citation Format

Share Document