scholarly journals Study of Mesh Pattern for Optically Transparent Flexible Antenna with Feedline

2021 ◽  
Vol 11 (21) ◽  
pp. 10002
Author(s):  
Seulgi Yu ◽  
Soyeong Lee ◽  
Hoosung Lee ◽  
Yong Bae Park

This paper presents a systematic parameter study on mesh pattern for optically transparent flexible antenna with feedline. In implementing a transparent flexible antenna using a metal mesh, transparency and performance of antenna and feedline are opposite factors. To understand how both elements are affected by the design parameters of the mesh, we analyze the performance of the feedlines and antennas according to the design parameters of diamond and square meshes. Moreover, the effect of the difference in the shape of diamond mesh and square mesh on performance is analyzed. The measured results of the fabricated samples offer the feasibility of implementing transparent feedlines and antennas with similar performance to nontransparent feedlines and antennas.

1996 ◽  
Vol 12 (1) ◽  
pp. 27-32 ◽  
Author(s):  
Louis M. Hsu

The difference (D) between a person's Verbal IQ (VIQ) and Performance IQ (PIQ) has for some time been considered clinically meaningful ( Kaufman, 1976 , 1979 ; Matarazzo, 1990 , 1991 ; Matarazzo & Herman, 1985 ; Sattler, 1982 ; Wechsler, 1984 ). Particularly useful is information about the degree to which a difference (D) between scores is “abnormal” (i.e., deviant in a standardization group) as opposed to simply “reliable” (i.e., indicative of a true score difference) ( Mittenberg, Thompson, & Schwartz, 1991 ; Silverstein, 1981 ; Payne & Jones, 1957 ). Payne and Jones (1957) proposed a formula to identify “abnormal” differences, which has been used extensively in the literature, and which has generally yielded good approximations to empirically determined “abnormal” differences ( Silverstein, 1985 ; Matarazzo & Herman, 1985 ). However applications of this formula have not taken into account the dependence (demonstrated by Kaufman, 1976 , 1979 , and Matarazzo & Herman, 1985 ) of Ds on Full Scale IQs (FSIQs). This has led to overestimation of “abnormality” of Ds of high FSIQ children, and underestimation of “abnormality” of Ds of low FSIQ children. This article presents a formula for identification of abnormal WISC-R Ds, which overcomes these problems, by explicitly taking into account the dependence of Ds on FSIQs.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Duy Tung Phan ◽  
Chang Won Jung

AbstractAn electromagnetic pulse (EMP) with high energy can damage electronic equipment instantly within a wide range of thousands of kilometers. Generally, a metal plate placed inside a thick concrete wall is used against an EMP, but it is not suitable for an EMP shielding window, which requires not only strong shielding effectiveness (SE) but also optical transparency (OT). In this paper, we propose a very thin and optically transparent structure with excellent SE for EMP shielding window application. The proposed structure consists of a saltwater layer held between two glass substrates and two metal mesh layers on the outside of the glass, with a total thickness of less than 1.5 cm. The SE and OT of the structure are above 80 dB and 45%, respectively, which not only meet the requirement of EMP shielding for military purposes but also retain the procedure of good observation. Moreover, the OT of the structure can be significantly improved using only one metal mesh film (MMF) layer, while the SE is still maintained high to satisfy the required SE for home applicants. With the major advantages of low cost, optical transparency, strong SE, and flexible performance, the proposed structure can be considered a good solution for transparent EMP shielding windows.


2021 ◽  
Vol 13 (7) ◽  
pp. 168781402110343
Author(s):  
Mei Yang ◽  
Yimin Xia ◽  
Lianhui Jia ◽  
Dujuan Wang ◽  
Zhiyong Ji

Modular design, Axiomatic design (AD) and Theory of inventive problem solving (TRIZ) have been increasingly popularized in concept design of modern mechanical product. Each method has their own advantages and drawbacks. The benefit of modular design is reducing the product design period, and AD has the capability of problem analysis, while TRIZ’s expertise is innovative idea generation. According to the complementarity of these three approaches, an innovative and systematic methodology is proposed to design big complex mechanical system. Firstly, the module partition is executed based on scenario decomposition. Then, the behavior attributes of modules are listed to find the design contradiction, including motion form, spatial constraints, and performance requirements. TRIZ tools are employed to deal with the contradictions between behavior attributes. The decomposition and mapping of functional requirements and design parameters are carried out to construct the structural hierarchy of each module. Then, modules are integrated considering the connections between each other. Finally, the operation steps in application scenario are designed in temporal and spatial dimensions. Design of cutter changing robot for shield tunneling machine is taken as an example to validate the feasibility and effectiveness of the proposed method.


Author(s):  
Zijian Guo ◽  
Tanghong Liu ◽  
Wenhui Li ◽  
Yutao Xia

The present work focuses on the aerodynamic problems resulting from a high-speed train (HST) passing through a tunnel. Numerical simulations were employed to obtain the numerical results, and they were verified by a moving-model test. Two responses, [Formula: see text] (coefficient of the peak-to-peak pressure of a single fluctuation) and[Formula: see text] (pressure value of micro-pressure wave), were studied with regard to the three building parameters of the portal-hat buffer structure of the tunnel entrance and exit. The MOPSO (multi-objective particle swarm optimization) method was employed to solve the optimization problem in order to find the minimum [Formula: see text] and[Formula: see text]. Results showed that the effects of the three design parameters on [Formula: see text] were not monotonous, and the influences of[Formula: see text] (the oblique angle of the portal) and [Formula: see text] (the height of the hat structure) were more significant than that of[Formula: see text] (the angle between the vertical line of the portal and the hat). Monotonically decreasing responses were found in [Formula: see text] for [Formula: see text] and[Formula: see text]. The Pareto front of [Formula: see text] and[Formula: see text]was obtained. The ideal single-objective optimums for each response located at the ends of the Pareto front had values of 1.0560 for [Formula: see text] and 101.8 Pa for[Formula: see text].


2015 ◽  
Vol 35 (4) ◽  
pp. 341-347 ◽  
Author(s):  
E. Rouhani ◽  
M. J. Nategh

Purpose – The purpose of this paper is to study the workspace and dexterity of a microhexapod which is a 6-degrees of freedom (DOF) parallel compliant manipulator, and also to investigate its dimensional synthesis to maximize the workspace and the global dexterity index at the same time. Microassembly is so essential in the current industry for manufacturing complicated structures. Most of the micromanipulators suffer from their restricted workspace because of using flexure joints compared to the conventional ones. In addition, the controllability of micromanipulators inside the whole workspace is very vital. Thus, it is very important to select the design parameters in a way that not only maximize the workspace but also its global dexterity index. Design/methodology/approach – Microassembly is so essential in the current industry for manufacturing complicated structures. Most of the micromanipulators suffer from their restricted workspace because of using flexure joints compared to the conventional ones. In addition, the controllability of micromanipulators inside the whole workspace is very vital. Thus, it is very important to select the design parameters in a way that not only maximize the workspace but also its global dexterity index. Findings – It has been shown that the proposed procedure for the workspace calculation can considerably speed the required calculations. The optimization results show that a converged-diverged configuration of pods and an increase in the difference between the moving and the stationary platforms’ radii cause the global dexterity index to increase and the workspace to decrease. Originality/value – The proposed algorithm for the workspace analysis is very important, especially when it is an objective function of an optimization problem based on the search method. In addition, using screw theory can simply construct the homogeneous Jacobian matrix. The proposed methodology can be used for any other micromanipulator.


2011 ◽  
Vol 133 (4) ◽  
Author(s):  
Raed I. Bourisli ◽  
Adnan A. AlAnzi

This work aims at developing a closed-form correlation between key building design variables and its energy use. The results can be utilized during the initial design stages to assess the different building shapes and designs according to their expected energy use. Prototypical, 20-floor office buildings were used. The relative compactness, footprint area, projection factor, and window-to-wall ratio were changed and the resulting buildings performances were simulated. In total, 729 different office buildings were developed and simulated in order to provide the training cases for optimizing the correlation’s coefficients. Simulations were done using the VisualDOE TM software with a Typical Meteorological Year data file, Kuwait City, Kuwait. A real-coded genetic algorithm (GA) was used to optimize the coefficients of a proposed function that relates the energy use of a building to its four key parameters. The figure of merit was the difference in the ratio of the annual energy use of a building normalized by that of a reference building. The objective was to minimize the difference between the simulated results and the four-variable function trying to predict them. Results show that the real-coded GA was able to come up with a function that estimates the thermal performance of a proposed design with an accuracy of around 96%, based on the number of buildings tested. The goodness of fit, roughly represented by R2, ranged from 0.950 to 0.994. In terms of the effects of the various parameters, the area was found to have the smallest role among the design parameters. It was also found that the accuracy of the function suffers the most when high window-to-wall ratios are combined with low projection factors. In such cases, the energy use develops a potential optimum compactness. The proposed function (and methodology) will be a great tool for designers to inexpensively explore a wide range of alternatives and assess them in terms of their energy use efficiency. It will also be of great use to municipality officials and building codes authors.


2021 ◽  
Vol 10 (1) ◽  
pp. 1-12
Author(s):  
Noviana Norrohmat ◽  
Umar Nimran ◽  
Kusdi Raharjo ◽  
Hamidah Nayati Utami ◽  
Endang Siti Astuti

The purpose of this research is to determine the organizational support for professionalism that has never been done before. The research approach is to conceptualize the structure of the relationship of variables from a study. Verification research is to test the hypothesis through data collection in the field using two methods, namely descriptive survey and explanatory survey. The use of both methods aims to analyze the causality relationship between research variables in accordance with the hypothesis quantitatively. There is significant influence between the variables of organizational support to professional variables. However, different results are found on the influence of organizational support variables on OCB and performance that have no significant effect. There is also an indirect influence between organizational support variables on OCB and performance through intermediary intervening professionalism variables. The difference between this research and the previous research are the use of constructs and the measurement in the unit of analysis being used.


Author(s):  
Khaled A. Galal ◽  
Ghassan R. Chehab

One of the Indiana Department of Transportation's (INDOT's) strategic goals is to improve its pavement design procedures. This goal can be accomplished by fully implementing the 2002 mechanistic–empirical (M-E) pavement design guide (M-E PDG) once it is approved by AASHTO. The release of the M-E PDG software has provided a unique opportunity for INDOT engineers to evaluate, calibrate, and validate the new M-E design process. A continuously reinforced concrete pavement on I-65 was rubblized and overlaid with a 13–in.-thick hot-mix asphalt overlay in 1994. The availability of the structural design, material properties, and climatic and traffic conditions, in addition to the availability of performance data, provided a unique opportunity for comparing the predicted performance of this section using the M-E procedure with the in situ performance; calibration efforts were conducted subsequently. The 1993 design of this pavement section was compared with the 2002 M-E design, and performance was predicted with the same design inputs. In addition, design levels and inputs were varied to achieve the following: ( a) assess the functionality of the M-E PDG software and the feasibility of applying M-E design concepts for structural pavement design of Indiana roadways, ( b) determine the sensitivity of the design parameters and the input levels most critical to the M-E PDG predicted distresses and their impact on the implementation strategy that would be recommended to INDOT, and ( c) evaluate the rubblization technique that was implemented on the I-65 pavement section.


Author(s):  
Mark Krisa ◽  
David Voelker

Compressed air is utilized throughout various production processes in the citrus industry and can influence production quality and operating costs. Within production equipment, compressed air is expanded from a higher pressure to perform various tasks. The pressure ahead of the final discharge location can have a direct impact on the operation of the specific process. Article pressure is the term used to describe the pressure located closest to the point where air is expanded to do work. Article pressure can be influenced by many variables that exist between supply equipment (compressors) and the point of use. Understanding the relationship between the supply pressure and the article pressure will facilitate the ability to maximize the repeatability and performance of production equipment and minimize the supply power required to operate the compressed air system. This paper will discuss variables that influence the difference between the pressure supplied by the compressor station and the pressure utilized within the production equipment. Illustrations and field examples will be utilized to describe issues. Troubleshooting methods will be discussed along with a description of how to trend variables that influence production so problems can be corrected before they influence productivity. Paper published with permission.


Sign in / Sign up

Export Citation Format

Share Document