scholarly journals Experimental Study of Primary Atomization Characteristics of Sonic Air-Assist Atomizers

2021 ◽  
Vol 11 (21) ◽  
pp. 10444
Author(s):  
Raghav Sikka ◽  
Knut Vågsæther ◽  
Dag Bjerketvedt ◽  
Joachim Lundberg

The present study compares two twin-fluid atomizer concepts based on the airflow (shock waves) pattern obtained through shadowgraph imaging for atomization of water with a low air/water pressure supply. The research work was conducted using the backlight imaging technique for converging (sonic) and converging–diverging (supersonic) air-assist atomizers with a 3.0 mm (throat) diameter. An annular sheet of thicknesses 70 µm and 280 µm with a high-speed air-core was employed to study the breakup dynamics for different water mass flow rates (100–350 kg/h) and air mass flow rates (5–35 kg/h). Different sheet breakup patterns were identified as the function of the ALR ratio (air-to-liquid mass flow), liquid Weber number (WeL), and Reynolds number (Reg). Different breakup modes extend from canonical Rayleigh bubble breakup, ligament-type breakup, to the pure pulsating breakup via annular sheet disintegration. The sheet breakup dynamics were studied in terms of spray angle and breakup length. With higher ALR values, breakup length showed a decreasing trend, while spray angle showed an increasing trend in the converging and converging–diverging (CD) air-assist atomizers, respectively, owing to the drastic difference in the jet flow dynamics.

Author(s):  
Muna S. Kassim ◽  
Fouad A. Saleh ◽  
Alaa Th. Aliwi

Experimental and numerical investigation to study the influence of add (one groove and two grooves) to the unshroud impeller onto the rotating stall as well fluctuations of pressure at a high speed blower of centrifugal. Experimental test rig which includes blower of centrifugal, transducer of pressure as well measurement instrumentations are constructed and designed for this study. A data acquisition system (hardware) as well its (software) have been developed into transferring the signal than transducer of pressure to the computer. The experimental work has been implemented through measuring the variation of static pressure as well fluctuation of pressure for two cases of the impeller (with one groove and with two grooves). Static pressure has been taken in different points arranged onto the frontal-wall of a volute casing along one track for two cases of the impeller. This track is angular track about the impeller. The results of experimental show that the fluctuations of pressure for different mass flow rates are nature of non-periodical and the mass flow rates decrease with the fluctuations of pressure increase. Also, the results indicate that the impeller with two grooves show high mass flow rates comparison with the impeller with one groove. Simulation of numerical has been implemented onto blower of centrifugal to analysis both field of flow as well fluctuations of pressure through using ANSYS (FLUENT 15). The simulation of numerical has been carried out through solve the continuity as well momentum equations with the moving reference framework technicality inside a blower. The numerical simulation results show good agreement with the results of experimental.


Author(s):  
Julia E. Stephens ◽  
Sameer Kulkarni

Abstract Advancements in core compressor technologies are necessary for next generation, high Overall Pressure Ratio (OPR) turbofan engines. High pressure compressors (HPCs) for future engines are being designed with exit corrected mass flow rates less than 2.25 kg/s (5 lbm/s). In order to accurately measure the performance of these advanced designs, high accuracy measurements are needed in test facilities. The W7 High Speed Multistage Axial Compressor Facility at NASA Glenn Research Center has been used to acquire data for advanced compressor designs. This facility utilizes an advanced differential pressure flow meter called a V-Cone. The facility has historically tested components with physical mass flow rates in the range of 27 to 45 kg/s (60 to 100 lbm/s). As such, when the V-Cone was calibrated prior to installation, the calibrations focused on higher mass flow rates, and uncertainties in that regime range from 0.5% to 0.85%. However, for low mass flow rates under 9 kg/s (20 lbm/s), expected in tests of advanced high OPR HPCs rear stages, the uncertainties of the V-Cone exceed 2.5%. To address this, using a method similar to that utilized by the National Institute of Standards and Technology, an array of Critical Flow Venturi Nozzles (CFVs) was installed in the W7 test section and used to calibrate the V-Cone in 0.5 kg/s (1 lbm/s) increments up to 10.5 kg/s (23 lbm/s). This effort details the measurements and uncertainties associated with this calibration which resulted in a final uncertainty of the V-Cone measurements under 1%.


Author(s):  
Yiheng Tong ◽  
Mao Li ◽  
Jens Klingmann

Flame structures, blowout limits and emissions of swirl-stabilized premixed methane-air flames were studied experimentally in a small atmospheric combustor rig. Combustion sections with rectangular cross section (30mm by 40mm) and circular cross section (inner diameter = 39mm) were used to investigate effects of combustor geometry on the flame’s performance. Flame structures and instabilities were obtained from CH* chemiluminescence captured by a high speed intensified CMOS camera. Maps of flame blowout limits (ΦBO) versus total mass flow rates ( ṁ = 70 ∼ 130 standard liter per minute, SLPM) were obtained with the combustor inlet flow temperature (Tin) kept at Tin = 397 ± 5K and a flow swirl number of S = 0.6. Emission data of mole fraction of CO in the exhaust gas versus equivalence ratio was obtained under the conditions of Tin = 293 ± 5K and S = 0.66. It is found that the flame became longer and more unstable with decreasing equivalence ratio or increasing total mass flow rates. A strong high-amplitude and low-frequency oscillation was found to be the reason for the flame blowout. A possible reason for flame instability and blowout is presented in the paper. Within the parameters investigated in this study, the equivalence ratio had the strongest impact on flame stabilities and CO emission. Both in the rectangular and circular combustors, when the flame length increased to a critical value (LIBO, which was approximately the same for these two combustors), flame could not be stabilized anymore and blowout occurred. Compared with the rectangular combustor, the circular one had lower blowout limits and was better in stabilizing the flame. Combustor geometry did not significantly affect CO emission in the current study.


2019 ◽  
Vol 865 ◽  
pp. 41-59 ◽  
Author(s):  
Sandip Mandal ◽  
D. V. Khakhar

We carry out an experimental study of the granular surface flow of nearly monodisperse glass beads on a conical heap formed on a rough circular disc by a narrow stream of the particles from a hopper, with the pouring point displaced from the centre of the disc. During the growth phase, an axisymmetric heap is formed, which grows either by periodic avalanches or by non-periodic avalanches that occur randomly over the azimuthal location of the heap, depending on the operating conditions and system properties. The dynamics of heap growth is characterized by the variation of the heap height, angle of repose and the angular velocity of the periodic avalanche with time, for different mass flow rates from the hopper. When the base of the heap reaches the edge of the disc closest to the pouring point, the heap stops growing and a steady surface flow of particles is developed on the heap surface, with particles flowing over the edge of the disc into a collection tray. The geometry is a unique example of a granular flow on an erodible bed without any bounding side walls. The corresponding steady state geometry of the asymmetric heap is characterized by means of surface contours and angles of repose. The streamwise and transverse surface velocities are measured using high-speed video photography and image analysis for different mass flow rates. The flowing layer thickness is measured by immersing a coated needle in the flow at different positions on the mid-line of the flow. The surface angle of the flowing layer is found to be significantly smaller than the angle of repose and to be independent of the mass flow rate. The velocity profiles at different streamwise positions for different mass flow rates are found to be geometrically similar and are well described by Gaussian functions. The flowing layer thickness is calculated from a model using the measured surface velocities. The predicted values match the measured values quite well.


Author(s):  
T. Mosbach ◽  
R. Sadanandan ◽  
W. Meier ◽  
R. Eggels

The altitude relight performance of a lean fuel injector and combustor was investigated at the altitude relight test rig at the Rolls-Royce Strategic Research Centre (SRC) in Derby. The studies were performed for different mass flow rates of air and kerosene, a combustor temperature and pressure of 278 K and 0.5 bar, respectively. Good optical access to the combustion chamber enabled the application of optical and laser measuring techniques. High-speed video imaging in the UV and visible wavelength range at a frame rate of 3.5 kHz was used to visualize the temporal development of the flame kernel. The observed differences between the UV and visible flame emissions demonstrate the different origins of the luminosity, i.e. OH* chemiluminescence and soot radiation. Further, laser-induced fluorescence of kerosene and OH radicals was applied at a frame rate of 5 Hz to visualize the fuel distribution and regions of hot and reacting mixtures. For two exemplary flames with different mass flow rates and fuel-to-air ratios, the steady burning flames after successful ignition are characterized in this paper by the distributions of kerosene, OH*, OH and soot luminosity. An example of the flame kernel development for a successful ignition is given by an image sequence from a high-speed video recording of the chemiluminescence. The importance of the upstream movement of the flame kernel as a condition preceding successful flame stabilization is identified.


Author(s):  
Matthieu Gancedo ◽  
Erwann Guillou ◽  
Ephraim Gutmark

Bleed slots located in the inducer region of centrifugal compressors have been demonstrated to extend the surge margin with minimal negative impact on performance. This paper describes the investigation of the effect of a bleed slot on map width enhancement of a turbocharger centrifugal compressor used for heavy duty diesel engine application. The goal is to evaluate the overall pressure instabilities on the compressor map and to study the dynamic phenomena occurring at low mass flow rates to better understand the benefits of the bleed slot on the compressor stability and surge line. The obstruction of the bleed slot permitted to compare the compressor behavior with the recirculation feature and without it. The pressure instability levels were measured along the accessible compressor map for the two cases using a high speed response pressure transducer at the compressor outlet. In addition, static and dynamic pressure measurements were conducted within the diffuser using respectively pressure taps and high speed response pressure transducers. The compressor with open bleed slot proved to have lower instability levels at low mass flow rates when not experiencing deep surge. Frequency responses at low mass flow rates showed that the implementation of the bleed slot suppresses broad band frequencies below the rpm frequency, which improves the overall stability. These frequencies are associated with rotating instabilities (RIs) with changing propagation speed depending on the rotational speed. At lower speeds, RIs are propagated with the wheel rotation whereas at higher speeds, they tend to propagate with the speed associated with their characteristic frequency.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Tobias Blanke ◽  
Markus Hagenkamp ◽  
Bernd Döring ◽  
Joachim Göttsche ◽  
Vitali Reger ◽  
...  

AbstractPrevious studies optimized the dimensions of coaxial heat exchangers using constant mass flow rates as a boundary condition. They show a thermal optimal circular ring width of nearly zero. Hydraulically optimal is an inner to outer pipe radius ratio of 0.65 for turbulent and 0.68 for laminar flow types. In contrast, in this study, flow conditions in the circular ring are kept constant (a set of fixed Reynolds numbers) during optimization. This approach ensures fixed flow conditions and prevents inappropriately high or low mass flow rates. The optimization is carried out for three objectives: Maximum energy gain, minimum hydraulic effort and eventually optimum net-exergy balance. The optimization changes the inner pipe radius and mass flow rate but not the Reynolds number of the circular ring. The thermal calculations base on Hellström’s borehole resistance and the hydraulic optimization on individually calculated linear loss of head coefficients. Increasing the inner pipe radius results in decreased hydraulic losses in the inner pipe but increased losses in the circular ring. The net-exergy difference is a key performance indicator and combines thermal and hydraulic calculations. It is the difference between thermal exergy flux and hydraulic effort. The Reynolds number in the circular ring is instead of the mass flow rate constant during all optimizations. The result from a thermal perspective is an optimal width of the circular ring of nearly zero. The hydraulically optimal inner pipe radius is 54% of the outer pipe radius for laminar flow and 60% for turbulent flow scenarios. Net-exergetic optimization shows a predominant influence of hydraulic losses, especially for small temperature gains. The exact result depends on the earth’s thermal properties and the flow type. Conclusively, coaxial geothermal probes’ design should focus on the hydraulic optimum and take the thermal optimum as a secondary criterion due to the dominating hydraulics.


Sign in / Sign up

Export Citation Format

Share Document