scholarly journals Detection of Exceptional Malware Variants Using Deep Boosted Feature Spaces and Machine Learning

2021 ◽  
Vol 11 (21) ◽  
pp. 10464
Author(s):  
Muhammad Asam ◽  
Shaik Javeed Hussain ◽  
Mohammed Mohatram ◽  
Saddam Hussain Khan ◽  
Tauseef Jamal ◽  
...  

Malware is a key component of cyber-crime, and its analysis is the first line of defence against cyber-attack. This study proposes two new malware classification frameworks: Deep Feature Space-based Malware classification (DFS-MC) and Deep Boosted Feature Space-based Malware classification (DBFS-MC). In the proposed DFS-MC framework, deep features are generated from the customized CNN architectures and are fed to a support vector machine (SVM) algorithm for malware classification, while, in the DBFS-MC framework, the discrimination power is enhanced by first combining deep feature spaces of two customized CNN architectures to achieve boosted feature spaces. Further, the detection of exceptional malware is performed by providing the deep boosted feature space to SVM. The performance of the proposed malware classification frameworks is evaluated on the MalImg malware dataset using the hold-out cross-validation technique. Malware variants like Autorun.K, Swizzor.gen!I, Wintrim.BX and Yuner.A is hard to be correctly classified due to their minor inter-class differences in their features. The proposed DBFS-MC improved performance for these difficult to discriminate malware classes using the idea of feature boosting generated through customized CNNs. The proposed classification framework DBFS-MC showed good results in term of accuracy: 98.61%, F-score: 0.96, precision: 0.96, and recall: 0.96 on stringent test data, using 40% unseen data.

Sensors ◽  
2020 ◽  
Vol 20 (14) ◽  
pp. 3923 ◽  
Author(s):  
Sonain Jamil ◽  
Fawad ◽  
MuhibUr Rahman ◽  
Amin Ullah ◽  
Salman Badnava ◽  
...  

Unmanned aerial vehicles (UAVs) have become popular in surveillance, security, and remote monitoring. However, they also pose serious security threats to public privacy. The timely detection of a malicious drone is currently an open research issue for security provisioning companies. Recently, the problem has been addressed by a plethora of schemes. However, each plan has a limitation, such as extreme weather conditions and huge dataset requirements. In this paper, we propose a novel framework consisting of the hybrid handcrafted and deep feature to detect and localize malicious drones from their sound and image information. The respective datasets include sounds and occluded images of birds, airplanes, and thunderstorms, with variations in resolution and illumination. Various kernels of the support vector machine (SVM) are applied to classify the features. Experimental results validate the improved performance of the proposed scheme compared to other related methods.


Author(s):  
Minghe Sun

As machine learning techniques, support vector machines are quadratic programming models and are recent revolutionary development for classification analysis. Primal and dual formulations of support vector machine models for both two-class and multi-class classification are discussed. The dual formulations in high dimensional feature space using inner product kernels are emphasized. Nonlinear classification function or discriminant functions in high dimensional feature spaces can be constructed through the use of inner product kernels without actually mapping the data from the input space to the high dimensional feature spaces. Furthermore, the size of the dual formulation is independent of the dimension of the input space and independent of the kernels used. Two illustrative examples, one for two-class and the other for multi-class classification, are used to demonstrate the formulations of these SVM models.


Author(s):  
Yuto Omae ◽  
Hirotaka Takahashi ◽  
◽  

In recent years, many studies have been performed on the automatic classification of human body motions based on inertia sensor data using a combination of inertia sensors and machine learning; training data is necessary where sensor data and human body motions correspond to one another. It can be difficult to conduct experiments involving a large number of subjects over an extended time period, because of concern for the fatigue or injury of subjects. Many studies, therefore, allow a small number of subjects to perform repeated body motions subject to classification, to acquire data on which to build training data. Any classifiers constructed using such training data will have some problems associated with generalization errors caused by individual and trial differences. In order to suppress such generalization errors, feature spaces must be obtained that are less likely to generate generalization errors due to individual and trial differences. To obtain such feature spaces, we require indices to evaluate the likelihood of the feature spaces generating generalization errors due to individual and trial errors. This paper, therefore, aims to devise such evaluation indices from the perspectives. The evaluation indices we propose in this paper can be obtained by first constructing acquired data probability distributions that represent individual and trial differences, and then using such probability distributions to calculate any risks of generating generalization errors. We have verified the effectiveness of the proposed evaluation method by applying it to sensor data for butterfly and breaststroke swimming. For the purpose of comparison, we have also applied a few available existing evaluation methods. We have constructed classifiers for butterfly and breaststroke swimming by applying a support vector machine to the feature spaces obtained by the proposed and existing methods. Based on the accuracy verification we conducted with test data, we found that the proposed method produced significantly higher F-measure than the existing methods. This proves that the use of the proposed evaluation indices enables us to obtain a feature space that is less likely to generate generalization errors due to individual and trial differences.


2016 ◽  
Vol 5 (2) ◽  
pp. 26-53 ◽  
Author(s):  
Arindam Chaudhuri

In this paper, classification task is performed by FRSVM. It is variant of FSVM and MFSVM. Fuzzy rough set takes care of sensitiveness of noisy samples and handles impreciseness. The membership function is developed as function of cener and radius of each class in feature space. It plays an important role towards sampling the decision surface. The training samples are either linear or nonlinear separable. In nonlinear training samples, input space is mapped into high dimensional feature space to compute separating surface. The different input points make unique contributions to decision surface. The performance of the classifier is assessed in terms of the number of support vectors. The effect of variability in prediction and generalization of FRSVM is examined with respect to values of C. It effectively resolves imbalance and overlapping class problems, normalizes to unseen data and relaxes dependency between features and labels. Experimental results on both synthetic and real datasets support that FRSVM achieves superior performance in reducing outliers' effects than existing SVMs.


2003 ◽  
Vol 15 (5) ◽  
pp. 1089-1124 ◽  
Author(s):  
Stefan Harmeling ◽  
Andreas Ziehe ◽  
Motoaki Kawanabe ◽  
Klaus-Robert Müller

We propose kTDSEP, a kernel-based algorithm for nonlinear blind source separation (BSS). It combines complementary research fields: kernel feature spaces and BSS using temporal information. This yields an efficient algorithm for nonlinear BSS with invertible nonlinearity. Key assumptions are that the kernel feature space is chosen rich enough to approximate the nonlinearity and that signals of interest contain temporal information. Both assumptions are fulfilled for a wide set of real-world applications. The algorithm works as follows: First, the data are (implicitly) mapped to a high (possibly infinite)—dimensional kernel feature space. In practice, however, the data form a smaller submanifold in feature space—even smaller than the number of training data points—a fact that has already been used by, for example, reduced set techniques for support vector machines. We propose to adapt to this effective dimension as a preprocessing step and to construct an orthonormal basis of this submanifold. The latter dimension-reduction step is essential for making the subsequent application of BSS methods computationally and numerically tractable. In the reduced space, we use a BSS algorithm that is based on second-order temporal decorrelation. Finally, we propose a selection procedure to obtain the original sources from the extracted nonlinear components automatically. Experiments demonstrate the excellent performance and efficiency of our kTDSEP algorithm for several problems of nonlinear BSS and for more than two sources.


Agriculture ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 371
Author(s):  
Yu Jin ◽  
Jiawei Guo ◽  
Huichun Ye ◽  
Jinling Zhao ◽  
Wenjiang Huang ◽  
...  

The remote sensing extraction of large areas of arecanut (Areca catechu L.) planting plays an important role in investigating the distribution of arecanut planting area and the subsequent adjustment and optimization of regional planting structures. Satellite imagery has previously been used to investigate and monitor the agricultural and forestry vegetation in Hainan. However, the monitoring accuracy is affected by the cloudy and rainy climate of this region, as well as the high level of land fragmentation. In this paper, we used PlanetScope imagery at a 3 m spatial resolution over the Hainan arecanut planting area to investigate the high-precision extraction of the arecanut planting distribution based on feature space optimization. First, spectral and textural feature variables were selected to form the initial feature space, followed by the implementation of the random forest algorithm to optimize the feature space. Arecanut planting area extraction models based on the support vector machine (SVM), BP neural network (BPNN), and random forest (RF) classification algorithms were then constructed. The overall classification accuracies of the SVM, BPNN, and RF models optimized by the RF features were determined as 74.82%, 83.67%, and 88.30%, with Kappa coefficients of 0.680, 0.795, and 0.853, respectively. The RF model with optimized features exhibited the highest overall classification accuracy and kappa coefficient. The overall accuracy of the SVM, BPNN, and RF models following feature optimization was improved by 3.90%, 7.77%, and 7.45%, respectively, compared with the corresponding unoptimized classification model. The kappa coefficient also improved. The results demonstrate the ability of PlanetScope satellite imagery to extract the planting distribution of arecanut. Furthermore, the RF is proven to effectively optimize the initial feature space, composed of spectral and textural feature variables, further improving the extraction accuracy of the arecanut planting distribution. This work can act as a theoretical and technical reference for the agricultural and forestry industries.


2021 ◽  
Vol 16 (1) ◽  
pp. 1-24
Author(s):  
Yaojin Lin ◽  
Qinghua Hu ◽  
Jinghua Liu ◽  
Xingquan Zhu ◽  
Xindong Wu

In multi-label learning, label correlations commonly exist in the data. Such correlation not only provides useful information, but also imposes significant challenges for multi-label learning. Recently, label-specific feature embedding has been proposed to explore label-specific features from the training data, and uses feature highly customized to the multi-label set for learning. While such feature embedding methods have demonstrated good performance, the creation of the feature embedding space is only based on a single label, without considering label correlations in the data. In this article, we propose to combine multiple label-specific feature spaces, using label correlation, for multi-label learning. The proposed algorithm, mu lti- l abel-specific f eature space e nsemble (MULFE), takes consideration label-specific features, label correlation, and weighted ensemble principle to form a learning framework. By conducting clustering analysis on each label’s negative and positive instances, MULFE first creates features customized to each label. After that, MULFE utilizes the label correlation to optimize the margin distribution of the base classifiers which are induced by the related label-specific feature spaces. By combining multiple label-specific features, label correlation based weighting, and ensemble learning, MULFE achieves maximum margin multi-label classification goal through the underlying optimization framework. Empirical studies on 10 public data sets manifest the effectiveness of MULFE.


2020 ◽  
pp. 1-11
Author(s):  
Mayamin Hamid Raha ◽  
Tonmoay Deb ◽  
Mahieyin Rahmun ◽  
Tim Chen

Face recognition is the most efficient image analysis application, and the reduction of dimensionality is an essential requirement. The curse of dimensionality occurs with the increase in dimensionality, the sample density decreases exponentially. Dimensionality Reduction is the process of taking into account the dimensionality of the feature space by obtaining a set of principal features. The purpose of this manuscript is to demonstrate a comparative study of Principal Component Analysis and Linear Discriminant Analysis methods which are two of the highly popular appearance-based face recognition projection methods. PCA creates a flat dimensional data representation that describes as much data variance as possible, while LDA finds the vectors that best discriminate between classes in the underlying space. The main idea of PCA is to transform high dimensional input space into the function space that displays the maximum variance. Traditional LDA feature selection is obtained by maximizing class differences and minimizing class distance.


2021 ◽  
pp. 1063293X2198894
Author(s):  
Prabira Kumar Sethy ◽  
Santi Kumari Behera ◽  
Nithiyakanthan Kannan ◽  
Sridevi Narayanan ◽  
Chanki Pandey

Paddy is an essential nutrient worldwide. Rice gives 21% of worldwide human per capita energy and 15% of per capita protein. Asia represented 60% of the worldwide populace, about 92% of the world’s rice creation, and 90% of worldwide rice utilization. With the increase in population, the demand for rice is increased. So, the productivity of farming is needed to be enhanced by introducing new technology. Deep learning and IoT are hot topics for research in various fields. This paper suggested a setup comprising deep learning and IoT for monitoring of paddy field remotely. The vgg16 pre-trained network is considered for the identification of paddy leaf diseases and nitrogen status estimation. Here, two strategies are carried out to identify images: transfer learning and deep feature extraction. The deep feature extraction approach is combined with a support vector machine (SVM) to classify images. The transfer learning approach of vgg16 for identifying four types of leaf diseases and prediction of nitrogen status results in 79.86% and 84.88% accuracy. Again, the deep features of Vgg16 and SVM results for identifying four types of leaf diseases and prediction of nitrogen status have achieved an accuracy of 97.31% and 99.02%, respectively. Besides, a framework is suggested for monitoring of paddy field remotely based on IoT and deep learning. The suggested prototype’s superiority is that it controls temperature and humidity like the state-of-the-art and can monitor the additional two aspects, such as detecting nitrogen status and diseases.


Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 742
Author(s):  
Canh Nguyen ◽  
Vasit Sagan ◽  
Matthew Maimaitiyiming ◽  
Maitiniyazi Maimaitijiang ◽  
Sourav Bhadra ◽  
...  

Early detection of grapevine viral diseases is critical for early interventions in order to prevent the disease from spreading to the entire vineyard. Hyperspectral remote sensing can potentially detect and quantify viral diseases in a nondestructive manner. This study utilized hyperspectral imagery at the plant level to identify and classify grapevines inoculated with the newly discovered DNA virus grapevine vein-clearing virus (GVCV) at the early asymptomatic stages. An experiment was set up at a test site at South Farm Research Center, Columbia, MO, USA (38.92 N, −92.28 W), with two grapevine groups, namely healthy and GVCV-infected, while other conditions were controlled. Images of each vine were captured by a SPECIM IQ 400–1000 nm hyperspectral sensor (Oulu, Finland). Hyperspectral images were calibrated and preprocessed to retain only grapevine pixels. A statistical approach was employed to discriminate two reflectance spectra patterns between healthy and GVCV vines. Disease-centric vegetation indices (VIs) were established and explored in terms of their importance to the classification power. Pixel-wise (spectral features) classification was performed in parallel with image-wise (joint spatial–spectral features) classification within a framework involving deep learning architectures and traditional machine learning. The results showed that: (1) the discriminative wavelength regions included the 900–940 nm range in the near-infrared (NIR) region in vines 30 days after sowing (DAS) and the entire visual (VIS) region of 400–700 nm in vines 90 DAS; (2) the normalized pheophytization index (NPQI), fluorescence ratio index 1 (FRI1), plant senescence reflectance index (PSRI), anthocyanin index (AntGitelson), and water stress and canopy temperature (WSCT) measures were the most discriminative indices; (3) the support vector machine (SVM) was effective in VI-wise classification with smaller feature spaces, while the RF classifier performed better in pixel-wise and image-wise classification with larger feature spaces; and (4) the automated 3D convolutional neural network (3D-CNN) feature extractor provided promising results over the 2D convolutional neural network (2D-CNN) in learning features from hyperspectral data cubes with a limited number of samples.


Sign in / Sign up

Export Citation Format

Share Document