scholarly journals Numerical and Experimental Study of the Blade Profile of a Savonius Type Rotor Implementing a Multi-Blade Geometry

2021 ◽  
Vol 11 (22) ◽  
pp. 10580
Author(s):  
Luis A. Gallo ◽  
Edwin L. Chica ◽  
Elkin G. Flórez ◽  
Felipe A. Obando

In the present study, the implementation of multi-blade profiles in a Savonius rotor was evaluated in order to increase the pressure in the blade’s intrados and, thus, decrease motion resistance. The geometric proportions of the secondary element were determined, which maximized the rotor’s performance. For this, the response surface methodology was used through a full factorial experimental design and a face-centered central composite design, consisting of three factors, each with three levels. The response variable that was sought to be maximized was the power coefficient (CP), which was obtained through the numerical simulation of the geometric configurations resulting from the different treatments. All geometries were studied under the same parameters and computational fluid dynamics models through the ANSYS Fluent software. The results obtained through both experimental designs showed a difference of only 1.06% in the performance estimates using the regression model and 3.41% when simulating the optimal proportions geometries. The optimized geometry was characterized by a CP of 0.2948, which constitutes an increase of 10.8% in its performance compared to the profile without secondary elements and of 51.2% compared to the conventional semicircular profile. The numerical results were contrasted with experimental data obtained using a wind tunnel, revealing a good degree of fit.

2019 ◽  
Vol 85 ◽  
pp. 03001
Author(s):  
Florina Costea ◽  
Ion Malael

In the current age of global energy crisis, a run for the use of renewable energy resources as the wind energy has gained a significant attention. The main objective of this study is the comparison between two wind turbine configurations. These two turbines have the same geometric parameters but one with a 4 digits NACA0018 blades and the other with 5 digits NACA63-415 blades. In this scientific paper, a numerical evaluation of the airfoil shape influence on the VAWT efficiency is done. For this study the CFD methods with Ansys Fluent software, are used. All the simulations are for unsteady flow at 1e06 Reynolds number value with SST turbulence model. At the design point the wind velocity is 12 m/s and for the wind turbine geometric features, the diameter is 3.25m and the height 4.87m. The power coefficient variation through tip speed ratio will be represented for each wind turbine configurations. To estimate the recirculation zone effects on the efficiency, the vorticity magnitude contours are presented for different positions of the blades. The results will indicate the feasibility of optimization of future wind turbine more complex airfoils.


2021 ◽  
Vol 19 ◽  
pp. 418-422
Author(s):  
J. Betancour ◽  
◽  
L. Velasquez ◽  
L.Y. Jaramillo ◽  
E. Chica ◽  
...  

Currently, in the literature, there are no general guidelines for the optimal hydraulic design of Archimedean screw turbines (AST) used in hydrokinetic applications. Therefore, this study is aiming at selecting the most significant geometric factors, such as the diameter ratio between the inner (𝐷𝑖 ) and the outer (𝐷𝑜) diameters (i.e., 𝐷𝑖/𝐷𝑜), the axle length (𝐿) and the blade stride (𝑝), influencing the AST performance by using a central composite face-centered (CCF) experimental design combined with the response surface methodology (RSM). The statistical analysis of variance (ANOVA) test identified with a significance level of 0.05 that the most significant variables on the performance of the turbine were 𝑝 and 𝐷𝑖/𝐷𝑜. The AST efficiency was evaluated by means of the power coefficient (𝐶𝑃), which was calculated by means of computational fluid dynamics (CFD) methods coupled with the 6-degrees of freedom (6-DoF) approach. The second-order polynomial model was used to predict the 𝐶𝑃 and the coefficient of determination (𝑅 2 ) was found to be 97.4%.


2015 ◽  
Vol 18 (4) ◽  
pp. 145-152
Author(s):  
Anh Ngoc Vu ◽  
Tung Nguyen Minh Huynh

This paper presents an automated process for analyzing the performance of vertical axis wind turbine (VAWT). The details of this process will be demonstrated, which include the airfoil geometry representation using CST method, a hybrid meshing process combining structured grids and unstructured grids, CFD calculation process and processing data results to calculate the power coefficient of VAWT. These processes are designed as separate modules. CFD methods used in this research is RANS 2D using Realizable k  turbulence model. Meshing process will be done on the GAMBIT software, the CFD calculations are done on commercial ANSYS FLUENT software and these processes are controlled by mathematical software MATLAB. The formulas used to calculate the power coefficient will be also introduced in this paper.


2019 ◽  
Vol 7 (1) ◽  
pp. 43-53
Author(s):  
Abbas Jassem Jubear ◽  
Ali Hameed Abd

The heat sink with vertically rectangular interrupted fins was investigated numerically in a natural convection field, with steady-state heat transfer. A numerical study has been conducted using ANSYS Fluent software (R16.1) in order to develop a 3-D numerical model.  The dimensions of the fins are (305 mm length, 100 mm width, 17 mm height, and 9.5 mm space between fins. The number of fins used on the surface is eight. In this study, the heat input was used as follows: 20, 40, 60, 80, 100, and 120 watts. This study focused on interrupted rectangular fins with a different arrangement and angle of the fins. Results show that the addition of interruption in fins in various arrangements will improve the thermal performance of the heat sink, and through the results, a better interruption rate as an equation can be obtained.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Atef M. Ibrahim ◽  
Ragaa A. Hamouda ◽  
Noura El-Ahmady El-Naggar ◽  
Fatma M. Al-Shakankery

AbstractEndoglucanase producing bacteria were isolated from Egyptian soils and the most active bacterial strain was identified as Bacillus subtilis strain Fatma/1. Plackett–Burman statistical design was carried out to assess the effect of seven process variables on endoglucanase production. Carboxymethyl cellulose (CMC), yeast extract and peptone were the most significant variables that enhanced the endoglucanase production and thus were selected for further optimization using face-centered central composite design. The highest yield of endoglucanase (32.37 U/mL) was obtained in run no. 9, using 18 g/L CMC, 8 g/L peptone, 7 g/L yeast extract and 0.1 g/L FeSO4.7H2O. The optimized medium showed about eightfold increase in endoglucanase production compared to the unoptimized medium. The produced crude enzyme was further purified by ammonium sulfate precipitation, then DEAE-Sepharose CL6B column. The purified enzyme was shown to have a molecular weight of 37 kDa. The enzyme showed maximum activity at pH 8.0, temperature of 50 °C, incubation time of 60 min. The half-life time (T1/2) was 139.53 min at 50 °C, while being 82.67 min at 60 °C. Endoglucanase at concentration of 12 U/mL effectively removed 84.61% of biofilm matrix of Pseudomonas aeruginosa with marked reduction in carbohydrate content of the biofilm from 63.4 to 7.9 μg.


2014 ◽  
Vol 703 ◽  
pp. 425-429
Author(s):  
Jun Fei Wu ◽  
Zhi Li ◽  
Fan Guo Meng ◽  
Ben Liang Yu

Compared with traditional screw pump,all-metal screw pump have more advantages in the oil extraction. In this paper, all-metal single screw pump's geometric model was made by PROE software; then the dynamic mesh technique was applied to mesh the model and constraint condition was applied in the ANSYS-FLUENT software. 3D flow field was numerical analyzed In that software, the impacts of screw speed on volume flow and volumetric efficiency were concluded, the conclusion can offer some valuable guidances to the all-metal single screw pump's design.


Aviation ◽  
2021 ◽  
Vol 25 (4) ◽  
pp. 268-277
Author(s):  
Volodymyr Dzyura ◽  
Pavlo Maruschak ◽  
Stoyan Slavov ◽  
Diyan Dimitrov ◽  
Dimka Vasileva

The basic regularities in the influence of processing parameters on the geometrical characteristics of the partially regular microreliefs, formed on the rotary body face surface, are established. Combinations of partially regular microreliefs are formed by using a contemporary CNC milling machine, and an advanced programing method, based on previously developed mathematical models. Full factorial experimental design is carried out, which consist of three factors, varied on three levels. Regression stochastic models in coded and natural form, which give the relations between the width of the grooves and the deforming force, feed rate and the pitch of the axial grooves, are derived as a result. Response surfaces and contour plots are built in order to facilitate the results analysis. Based on the dependencies of the derived regression stochastic models, it is found that the greatest impact on the width of the grooves has the magnitude of the deforming force,followed by the feed rate. Also, it is found that the axial pitch between adjacent toolpaths has the least impact on the width of the grooves. As a result of the full-factorial experiment, the average geometric parameters of the microrelief grooves were obtained on their basis. When used, these values will provide for the required value of the relative burnishing area of the surface with regular microreliefs, and, accordingly, the specified operational properties.


2015 ◽  
Author(s):  
Nilima C. Joshi ◽  
Ayaz J. Khan

ost of the flow phenomena important to modern technology involve turbulence. Propellers generally operate in the very complex flow field that may be highly turbulent and spatially non-uniform. Propeller skew is the single most effective design parameter which has significant influence on reducing propeller induced vibration. Up to date applications of propeller skew does not has a specified criteria for any turbulent model. This paper deals with the model which explains the effect of propeller skewness on hydrodynamic performance related to study of turbulent model via mathematical and numerical modeling. The simulation work is carried out using ANSYS-FLUENT software.


Sign in / Sign up

Export Citation Format

Share Document