scholarly journals An Algorithm for Obtaining 3D Egg Models from Visual Images

2021 ◽  
Vol 12 (1) ◽  
pp. 373
Author(s):  
Zlatin Zlatev ◽  
Mariya Georgieva-Nikolova ◽  
Hristo Lukanov

Mathematical models for describing the shape of eggs find application in various fields of practice. The article proposes a method and tools for a detailed study of the shape and peripheral contours of digital images of eggs that are suitable for grouping and sorting. A scheme has been adapted to determine the morphological characteristics of eggs, on the basis of which an algorithm has been created for obtaining their 3D models, based on data from color digital images. The deviation from the dimensions of the major and minor axes measured with a caliper and the proposed algorithm is 0.5–1.5 mm. A model of a correction factor has been established by which the three-dimensional shape of eggs can be determined with sufficient accuracy. The results obtained in this work improve the assumption that the use of algorithms to determine the shape of eggs strongly depends on those of the bird species studied. It is approved with data for Mallard eggs which have a more elliptical shape and correspondingly lower values of correction coefficient ‘c’ (c = 1.55–4.96). In sparrow (c = 9.55–11.19) and quail (c = 11.71–13.11) eggs, the form tends to be ovoid. After testing the obtained model for eggs from three bird species, sparrow, mallard, and quail, the coefficient of the determination of proposed model was R2 = 0.96. The standard error was SE = 0.08. All of the results show a p-value of the model less than α = 0.05. The proposed algorithm was applied to create 3D egg shapes that were not used in the previous calculations. The resulting error was up to 9%. This shows that in the test, the algorithm had an accuracy of 91%. An advantage of the algorithm proposed here is that the human operator does not need to select points in the image, as is the case with some of the algorithms developed by other authors. The proposed methods and tools for three-dimensional transformation of egg images would be applicable not only for the needs of poultry farming, but also in ornithological research when working with different shaped varieties of eggs. Experimental results show that the proposed algorithm has sufficient accuracy.

2020 ◽  
Vol 25 (7) ◽  
pp. 709-722
Author(s):  
Judith Wardwell-Swanson ◽  
Mahomi Suzuki ◽  
Karen G. Dowell ◽  
Manuela Bieri ◽  
Eva C. Thoma ◽  
...  

Three-dimensional (3D) spheroid models are rapidly gaining favor for drug discovery applications due to their improved morphological characteristics, cellular complexity, long lifespan in culture, and higher physiological relevance relative to two-dimensional (2D) cell culture models. High-content imaging (HCI) of 3D spheroid models has the potential to provide valuable information to help researchers untangle disease pathophysiology and assess novel therapies more effectively. The transition from 2D monolayer models to dense 3D spheroids in HCI applications is not trivial, however, and requires 3D-optimized protocols, instrumentation, and resources. Here, we discuss considerations for moving from 2D to 3D models and present a framework for HCI and analysis of 3D spheroid models in a drug discovery setting. We combined scaffold-free, multicellular spheroid models with scalable, automation-compatible plate technology enabling image-based applications ranging from high-throughput screening to more complex, lower-throughput microphysiological systems of organ networks. We used this framework in three case studies: investigation of lipid droplet accumulation in a human liver nonalcoholic steatohepatitis (NASH) model, real-time immune cell interactions in a multicellular 3D lung cancer model, and a high-throughput screening application using a 3D co-culture model of gastric carcinoma to assess dose-dependent drug efficacy and specificity. The results of these proof-of-concept studies demonstrate the potential for high-resolution image-based analysis of 3D spheroid models for drug discovery applications, and confirm that cell-level and temporal-spatial analyses that fully exploit multicellular features of spheroid models are not only possible but soon will be routine practice in drug discovery workflows.


2021 ◽  
Author(s):  
Yu Tang ◽  
Jacopo Niccolo Cerasoni ◽  
Emily Yuko Hallett

Photogrammetry is a method of calculating the three-dimensional shape of an object from a set of images. The advantages of Photogrammetry include the ability to record the shape of an object in a short time and with high accuracy without contact. In addition, the generated model can be displayed without textures. Here, the High Resolution Photogrammetry method is presented, which describes the use of photogrammetric techniques to take pictures and generate models. This method aims to give a comprehensive and extensive description for the development of high resolution 3D models, merging the well known techniques used in academic and computer graphic fields, allowing anyone to independently produce high resolution and quantifiable models for any need.


2021 ◽  
Vol 11 (8) ◽  
pp. 380
Author(s):  
Dzintra Kazoka ◽  
Mara Pilmane ◽  
Edgars Edelmers

Combining classical educational methods with interactive three-dimensional (3D) visualization technology has great power to support and provide students with a unique opportunity to use them in the study process, training, and/or simulation of different medical procedures in terms of a Human Anatomy course. In 2016, Rīga Stradiņš University (RSU) offered students the 3D Virtual Dissection Table “Anatomage” with possibilities of virtual dissection and digital images at the Department of Morphology. The first 3D models were printed in 2018 and a new printing course was integrated into the Human Anatomy curriculum. This study was focused on the interaction of students with digital images, 3D models, and their combinations. The incorporation and use of digital technologies offered students great tools for their creativity, increased the level of knowledge and skills, and gave them a possibility to study human body structures and to develop relationships between basic and clinical studies.


Author(s):  
Natraj Iyer ◽  
Subramaniam Jayanti ◽  
Karthik Ramani

Three dimensional shape searching is a problem of current interest in several different fields, especially in the mechanical engineering domain. There has been a large body of work in developing representations for 3D shapes. However, there has been limited work done in developing domain dependent benchmark databases for 3D shape searching. In this paper, we propose a benchmark database for evaluating shape based search methods relevant to the mechanical engineering domain. Twelve feature vector based representations are compared using the benchmark database. The main contributions of this paper are development of an engineering shape benchmark and an understanding of the effectiveness of different shape representations for classes of engineering parts.


2011 ◽  
Vol 467-469 ◽  
pp. 88-91
Author(s):  
Zhi Tang ◽  
Yu Zhang

Through the research of the visualization of the human-based three-dimensional shape domain, establish the three-dimensional spatial extent of human’s function space. And coordinate the difference of function space between individuals and groups. It is based on the morphological characteristics, physical features and psychological characteristics of human. Then achieve the match of the data of body and design parameters of products. Thus integrate ergonomics into the early process of design. And complete the change of the mode of space design from dimension driven to 3D human body model-driven. The research of human body’s domain will definite the way and standards of interaction space between men and machines. Thus the parameters of human body become precise, three-dimensional and instrumental. Solve the discord of relationship between people and objects, people and environment, performance and environment. To realize the expression of man’s functions in the product itself and the interaction with them.


2011 ◽  
Vol 1 (1) ◽  
Author(s):  
Dariusz Frejlichowski

AbstractInterest in three-dimensional shape retrieval is currently increasing, driven by two important reasons — the rapid increase of the amount of multimedia data and a noticeable advance in computer hardware and software during recent years. Presently, it is possible to retrieve complicated 3D models in a reasonable span of time thanks to the use of sophisticated 3D shape description algorithms, a feat which was unthinkable a few years ago. The main issue is the efficiency of the approaches, which must work both quickly and reliably. Hence, in this paper four 3D shape description algorithms — Extended Gaussian Image, Shape Distributions, Shape Histograms and Light Field Descriptor — were experimentally compared in order to determine which was most effective. As it turned out, the latter obtained the best retrieval result.


2008 ◽  
Vol 130 (3) ◽  
Author(s):  
Dong-Hyun Lee ◽  
Young-Cheol Kim ◽  
Kyung-Woong Kim

To obtain the foil bearing characteristics, the fluid film pressure must be coupled with the elastic deformation of the foil structure. However, all of the structural models thus far have simplified the foil structure without consideration of its three-dimensional shape. In this study, a finite element foil structural model is proposed that takes into consideration the three-dimensional foil shape. Using the proposed model, the deflections of interconnected bumps are compared to those of separated bumps, and the minimum film thickness determined from the proposed structural models is compared to those of previous models. In addition, the effects of the top foil and bump foil thickness on the foil bearing static performance are evaluated. The results of the study show that the three-dimensional shape of the foil structure should be considered for accurate predictions of foil bearing performances and that too thin top foil or bump foil thickness may lead to a significant decrease in the load capacity. In addition, the foil stiffness variation does not increase the load capacity much under a simple foil structure.


Author(s):  
Kenneth H. Downing

Three-dimensional structures of a number of samples have been determined by electron crystallography. The procedures used in this work include recording images of fairly large areas of a specimen at high tilt angles. There is then a large defocus ramp across the image, and parts of the image are far out of focus. In the regions where the defocus is large, the contrast transfer function (CTF) varies rapidly across the image, especially at high resolution. Not only is the CTF then difficult to determine with sufficient accuracy to correct properly, but the image contrast is reduced by envelope functions which tend toward a low value at high defocus.We have combined computer control of the electron microscope with spot-scan imaging in order to eliminate most of the defocus ramp and its effects in the images of tilted specimens. In recording the spot-scan image, the beam is scanned along rows that are parallel to the tilt axis, so that along each row of spots the focus is constant. Between scan rows, the objective lens current is changed to correct for the difference in specimen height from one scan to the next.


2006 ◽  
Vol 37 (4) ◽  
pp. 583
Author(s):  
Michael McGowan

This article examines the relatively new fields of colour and shape trade marks. It was initially feared by some academics that the new marks would encroach on the realms of patent and copyright.  However, the traditional requirements of trade mark law, such as functionality and descriptiveness, have meant that trade marks in colour and shape are extremely hard to acquire if they do not have factual distinctiveness. As colour and shape trade marks have no special restrictions, it is proposed that the combination trade mark theory and analysis from the Diamond T case should be used as a way to make them more accessible. The combination analysis can be easily applied because every product has a three dimensional shape and a fourth dimension of colour.


Sign in / Sign up

Export Citation Format

Share Document