scholarly journals A Comparative Study of Fungal Community Structure, Diversity and Richness between the Soil and the Phyllosphere of Native Grass Species in a Copper Tailings Dam in Shanxi Province, China

2018 ◽  
Vol 8 (8) ◽  
pp. 1297 ◽  
Author(s):  
Tong Jia ◽  
Ruihong Wang ◽  
Xiaohui Fan ◽  
Baofeng Chai

In the study area, mining processes have led to the accumulation of a large amount of ore sand and a tailings dam was established above this artificial overburden. After a long period of restoration, the area was reclaimed by a variety of native vegetation. This study investigated four of these native grass species, namely, Bothriochloa ischaemum, Imperata cylindrica, Elymus dahuricus and Calamagrostis epigejos, having reestablished themselves after the restoration of a copper tailings dam built in 1969 in Shanxi Province, China. We analyzed the fungal community structure in the soil and the phyllosphere of the four native grass species using high-throughput sequencing. Results showed that the soil of the tailings dam was weakly alkaline and copper (Cu) was the most pervasive element present. Ascomycota were the dominant fungal taxa in the soil and the phyllosphere of all four native grass species, for which total soil nitrogen (N) content was an influencing factor. Basidiomycota was positively correlated to cadmium (Cd), which can additionally be used as an indicator of Cd pollution in copper tailings dams. Among the four native grass species, Nectriaceae was the dominant fungal family found exclusively in B. ischaemum; Meruliaceae and Phaeosphaeriaceae were the dominant fungal families of E. dahuricus; Cordycipitaceae and Sporormiaceae were only found in C. epigejos. However, we found no evidence of a dominant fungal family in I. cylindrica. Furthermore, Erythrobasidiales sp., which had the highest betweenness centrality after network analysis, was identified as the key fungal species in all four native grass species.

2021 ◽  
Vol 12 ◽  
Author(s):  
Tong Jia ◽  
Xuerong Wang ◽  
Tingyan Guo ◽  
Baofeng Chai

Microorganisms drive litter decomposition while maintaining the chemical cycle of ecosystems. We used the dominant vegetation (Imperata cylindrica) in the mining area selected for this study for this experiment to explore fungal community characteristics, key fungal groups, and their associative driving factors during I. cylindrica litter decomposition. Maximum litter C/N values occurred 100days after the commencement of the decomposition experiment during all different recovery years in this copper tailings area. Heavy metals in litter [copper (Cu), zinc (Zn), plumbum (Pb), and cadmium (Cd)] accumulated gradually with decomposition. The dominant fungal phyla observed in the community were Ascomycota and Basidiomycota, while the classes Sordariomycetes and Eurotiomycetes significantly increased as litter decomposition progressed. Degrees of connectivity and interaction between fungal communities were highest during the early litter decomposition stage. Sordariomycetes, Dothideomycetes, and Leotiomycetes all played critical roles in maintaining fungal community relationships. The effect of physicochemical properties and enzyme activities in I. cylindrica litter was significant on the dominant fungi, while driving factors that affected fungal communities differed over different recovery stages. Total nitrogen (TN), heavy metals, pH, and enzyme activities in the little were significantly correlated with fungal community composition. Litter properties throughout the litter decomposition process mainly affected the dynamics of the fungal community structure. The main environmental factors that affected fungal community structure were copper content and pH. Dichotomopilus, Trichoderma, Knufia, Phialophora, Oxyporus, and Monocillium, which all played important roles in litter decomposition, positively correlated with heavy metals, sucrase, and catalase. Finally, results from this study will help us better clarify litter decomposition mechanisms in degraded ecosystems as well as provide a scientific basis for improving species cycling and nutrient transformation efficiency in mining ecosystems.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e4660 ◽  
Author(s):  
Julia König ◽  
Marco Alexandre Guerreiro ◽  
Derek Peršoh ◽  
Dominik Begerow ◽  
Jochen Krauss

Epichloë endophytes associated with cool-season grass species can protect their hosts from herbivory and can suppress mycorrhizal colonization of the hosts’ roots. However, little is known about whether or not Epichloë endophyte infection can also change the foliar fungal assemblages of the host. We tested 52 grassland study sites along a land-use intensity gradient in three study regions over two seasons (spring vs. summer) to determine whether Epichloë infection of the host grass Lolium perenne changes the fungal community structure in leaves. Foliar fungal communities were assessed by Next Generation Sequencing of the ITS rRNA gene region. Fungal community structure was strongly affected by study region and season in our study, while land-use intensity and infection with Epichloë endophytes had no significant effects. We conclude that effects on non-systemic endophytes resulting from land use practices and Epichloë infection reported in other studies were masked by local and seasonal variability in this study’s grassland sites.


2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Martin Jemo ◽  
Driss Dhiba ◽  
Abeer Hashem ◽  
Elsayed Fathi Abd_Allah ◽  
Abdulaziz A. Alqarawi ◽  
...  

2018 ◽  
Vol 221 (1) ◽  
pp. 493-502 ◽  
Author(s):  
Adair Patterson ◽  
Lluvia Flores-Rentería ◽  
Amy Whipple ◽  
Thomas Whitham ◽  
Catherine Gehring

Agriculture ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1113
Author(s):  
Xiaolong Lin ◽  
Zongmu Yao ◽  
Xinguang Wang ◽  
Shangqi Xu ◽  
Chunjie Tian ◽  
...  

Rice is a staple food for the world’s population. However, the straw produced by rice cultivation is not used sufficiently. Returning rice straw to the field is an effective way to help reduce labor and protect the soil. This study focused on the effect of water-covered depth with the freeze–thaw cycle on rice straw decomposition and the soil fungal community structure in a field in Northeast China. The field and controlled experiments were designed, and the fungal ITS1 region was tested by high-throughput sequencing for analyzing the fungal communities in this study. The results showed that water coverage with the freeze–thaw cycle promoted the decomposition of rice straw and influenced the fungal community structure; by analyzing the network of the fungal communities, it was found that the potential keystone taxa were Penicillium, Talaromyces, Fusarium, and Aspergillus in straw decomposition; and the strains with high beta-glucosidase, carboxymethyl cellulase, laccase, lignin peroxidase, and manganese peroxidase could also be isolated in the treated experiment. Furthermore, plant pathogenic fungi were found to decrease in the water-covered treatment. We hope that our results can help in rice production and straw return in practice.


2020 ◽  
Author(s):  
Chunhui Ma ◽  
Jiangjiao Qi ◽  
Xue Yu ◽  
Lihe Su ◽  
Tingting He ◽  
...  

Abstract Alfalfa (Medicago sativa L.) is an important forage legume in farming and animal husbandry systems. In this study, MiSeq high-throughput sequencing was applied to assess the relationship between bacterial and fungal community structures and alfalfa growth characteristics and soil physical and chemical properties induced by different cultivars alfalfa (Victoria, Kangsai, Aohan) in the grey desert soil. The results showed that the diversity of bacterial and fungal in Victoria was higher, and the bacterial diversity was significantly lower for alfalfa with Aohan than for the others, and the fungal diversity was lower for alfalfa with Kangsai than for the others. Heatmap showed that total nitrogen, fresh weight, pH and organic have significantly affect fungal community structure, whereas pH and organic carbon also significant effects on bacterial community structure. LefSe analysis showed that the growth adaptability of introduced alfalfa is mainly related to fungal and bacterial species, and the beneficial microorganisms with significant differences and relative high abundance are significantly enriched in Victoria. Pathogens with high relative abundance are mainly concentrated in Aohan alfalfa soil. Based on our findings, Victoria is the high-yield alfalfa suitable for planting in gray desert soil, while planting Kangsai and Aohan alfalfa needs probiotic for adjuvant.


Sign in / Sign up

Export Citation Format

Share Document