scholarly journals An Eight-Zonal Piezoelectric Tube-Type Threaded Ultrasonic Motor Based on Second-Order Bending Mode

2019 ◽  
Vol 9 (10) ◽  
pp. 2018 ◽  
Author(s):  
Xiangcheng Chu ◽  
Mengfan Zhang ◽  
Songmei Yuan ◽  
Xueyang Zheng

In order to reduce the driving voltage and gain better output characteristics of piezoelectric actuators, an eight-zonal piezoelectric tube-type threaded ultrasonic motor based on two second-order bending modes was analyzed using the method of finite element analysis (FEA), and a prototype was fabricated and experimentally studied in this research. This piezoelectric motor was designed to be excited by four electrical sources applied simultaneously to four groups of electrodes on the customized lead zirconate titanate (PZT) tubular stator (inside diameter 5.35 mm, outside diameter 6.35 mm, length 30 mm), with ±90° phase shifts between adjacent electrodes. Experimental results show that the threaded motor could output a stall force (stall force means the output pull or thrust force when the linear speed is set to be zero) of about 5.0 N and a linear velocity of 4.9 mm/s with no load at the driving voltage of 40 Vpp (Vpp means the peak-to-peak value of the voltage volts). This piezoelectric motor with a compact structure and screw drive mechanism shows relatively fine velocity controllability and has huge superiority in micro-positioning systems.

2020 ◽  
Vol 12 (3) ◽  
pp. 168781402091147 ◽  
Author(s):  
Xiaodong Chen ◽  
Zilong Deng ◽  
Siya Hu ◽  
Xingjun Gao ◽  
Jinhai Gao

The microgripper based on the principle of lever amplification is easy to realize; however, the theoretical amplification factor is limited by the space size and the structure is not compact enough. The microgripper based on the triangular amplification principle has a compact structure and high amplification factor, but it is not conducive to miniaturization design. Considering compactness, parallel clamping, high magnification, and miniaturization design, a three-stage amplifier consisting of a semi-rhombic amplifier and lever amplifiers is designed. To begin with, the theoretical amplification ratio and the relationship between input variables and output variables are calculated by energy method. Furthermore, the finite element analysis software is used to optimize the structural parameters and analyze the performance of the model. Lastly, the experimental verification is carried out. At 150 V of driving voltage, the maximum output displacement was 530mm, and the actual magnification was 24 times. Microparts can be gripped in parallel and stably, which confirms the validity of the design.


2013 ◽  
Vol 415 ◽  
pp. 122-125
Author(s):  
Shine Tzong Ho ◽  
Fu Jie Hu

A novel design of the semi-elliptical motor based on a double-mode type ultrasonic motor is proposed and analyzed in this paper. Due to the simplification, the semi-elliptical piezoelectric motor can be considered as an improvement of the elliptical piezoelectric motor which we have proposed in the past. The composite structure of the stator in the motor is formed by two multilayer piezoelectric actuators clamped in a semi-elliptical elastic body. In the simulation, finite element modeling of the motor is performed. The geometry of the stator has been computed with the help of the finite element analysis. Then, the dimensions of the stator's structure were determined by making the two resonance frequencies close to each other. In the experiments, the impedance and the displacement response are measured and discussed for understanding the characteristics of the linear piezoelectric motor with a semi-elliptical stator. The motor achieved maximum moving speed of 96 mm/s and the maximum output force of 0.64 N when applying a sine wave of 14Vr driving voltage at 21.2 kHz, while the maximum moving speed of 132 mm/s and the maximum output force of 0.88 N can be achieved if applying two signal driving method of the same voltage.


Micromachines ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 500
Author(s):  
Jian Chen ◽  
Wenzhi Gao ◽  
Changhai Liu ◽  
Liangguo He ◽  
Yishan Zeng

This study proposes the improvement of the output performance of a resonant piezoelectric pump by adding proof masses to the free ends of the prongs of a U-shaped piezoelectric resonator. Simulation analyses show that the out-of-phase resonant frequency of the developed resonator can be tuned more efficiently within a more compact structure to the optimal operating frequency of the check valves by adjusting the thickness of the proof masses, which ensures that both the resonator and the check valves can operate at the best condition in a piezoelectric pump. A separable prototype piezoelectric pump composed of the proposed resonator and two diaphragm pumps was designed and fabricated with outline dimensions of 30 mm × 37 mm × 54 mm. Experimental results demonstrate remarkable improvements in the output performance and working efficiency of the piezoelectric pump. With the working fluid of liquid water and under a sinusoidal driving voltage of 298.5 Vpp, the miniature pump can achieve the maximum flow rate of 2258.9 mL/min with the highest volume efficiency of 77.1% and power consumption of 2.12 W under zero backpressure at 311/312 Hz, and the highest backpressure of 157.3 kPa under zero flow rate at 383 Hz.


2014 ◽  
Vol 700 ◽  
pp. 660-666
Author(s):  
Shun Li Gao ◽  
Hong Yu Li ◽  
Yong Zheng Shi ◽  
Dan Ping Yan ◽  
Rong Liu

As the city develops radiady, the natural gas is widely used nealy in every filed of people’s lives. During the pressure regulation, the phenomenon of ice jam, which can affect the normal utilization, happens. Heater can be regarded as one of the most important measures that prevents pipe from freezing occurring due to temperature drop caused by pressure regulation. Low-temperature radiant heater with tight structure is specifically designed for gad gate station. The heat transfer process of the gate station is analyzed. In the meantime, the mathematical model of radiant heater, which could be fitted for the gate station, is erected. At the same time, the influence of heat exchange size, radiant panel size and radiant efficiency, brought by tube are discussed. The result shows that the tube type of radiant heater has a greatest performance. Considering the tubes with compact structure, taking tube type of radiant heater as the heater used in gate station is the optimal decision. The analysis combined in this paper is the foundation to choose the heater of gate station.


2018 ◽  
Vol 7 (2.21) ◽  
pp. 66 ◽  
Author(s):  
R Roopa ◽  
P Navin Karanth ◽  
S M. Kulkarni

This study reports the performance of piezo actuated compliant flexure diaphragm for micropump and MEMS application. To achieve the high performance of diaphragm at the low operating voltage compliant flexure diaphragm design is introduced. Very limited work has done on the diaphragms of micropump. Large numbers of mechanical micropumps have used plane diaphragms. The central deflection of diaphragm plays an important role in defining the micropump performance. The flow rate of mechanical type micropump strongly depends on the central deflection of diaphragm. In this paper compliant flexure diaphragms are designed for micropump to achieve higher deflection at lower operating voltage. Finite element analysis of compliant flexure diaphragm with single layer PVDF (Polyvinylidene fluoride) actuator is simulated in COMSOL. Compliant flexure diaphragms with a different number of flexures are analyzed. The central deflection of compliant flexure diaphragms is measured for driving voltages of 90V to 140V in 10 steps. The deflection of the compliant flexure diaphragm mainly depends on flexure width and length, the number of flexures in the diaphragm, PVDF thickness, diaphragm thickness and driving voltage. Use of compliant flexure diaphragm for micropump will reduce the mass and driving voltage of micropump. An attempt is made to compare the results of compliant flexure diaphragms with plane diaphragms. From the experimental results it is noticed that the compliant flexure diaphragm deflection is twice that of the plane diaphragm at same driving voltage. Deflection of three flexure and four flexure compliant diaphragms is 10.5µm and 11.5µm respectively at 140V.  


2021 ◽  
Vol 2125 (1) ◽  
pp. 012047
Author(s):  
Xiaozhu Wang ◽  
Jian Zhang

Abstract In this paper, a new rotating standing wave ultrasonic motor with multiple driving teeth is proposed. Using the method of adding additional teeth, the correction of the B06 surface of the ultrasonic motor vibrator is expected, the design of the optimum position of the drive tooth is realized. At the same time, a method of reducing the stiffness of the rotor is proposed, and the flexibility is met, the integrated design of the rotor and the pressure device can be realized by removing the disc spring. The accuracy of the finite element analysis is verified by the vibration test of the prototype oscillator. The finite element analysis of the main structure parameters of the influence oscillator mode and natural frequency is carried out. It provides theoretical basis for the design and machining of vibration.


2011 ◽  
Vol 2011 ◽  
pp. 1-9
Author(s):  
Shi Jingzhuo ◽  
Lv Lin ◽  
Zhang Yu

Model of ultrasonic motor is the foundation of the design of ultrasonic motor's speed and position controller. A two-input and one-output dynamic Takagi-Sugeno model of ultrasonic motor driving system is worked out using fuzzy reasoning modeling method in this paper. Many fuzzy reasoning modeling methods are sensitive to the initial values and easy to fall into local minimum, and have a large amount of calculation. In order to overcome these defects, equalized universe method is used in this paper to get clusters centers and obtain fuzzy clustering membership functions, and then, the unknown parameters of the conclusions of fuzzy rules are identified using least-square method. Different experimental data that are tested with different operational conditions are used to examine the validity of the fuzzy model. Comparison between experimental data and calculated data of the model indicates that the model can well describe the nonlinear characteristics among the frequency, amplitude of driving voltage and rotating speed. The proposed fuzzy model can be used to analyze the performance of ultrasonic motor driving system, and also can be used to design the speed and position controller of ultrasonic motor.


2013 ◽  
Vol 6 (4) ◽  
pp. 523-527 ◽  
Author(s):  
Giedrius Augustinavičius ◽  
Audrius Čereška

The paper presents modelling precise dual axis flexure-based precision positioning systems for micro-positioning applications. The positioning system is featured with monolithic architecture, flexure-based joints and piezo stacks. Its workspace has been evaluated via analytical approaches. Amplification mechanism is optimally designed. The mathematical model of the positioning system has been derived and verified by resorting to finite element analysis (FEA). The established analytical and (FEA) models are helpful for optimizing reliable architecture and improving the performance of the positioning system. Santrauka Straipsnyje pristatomas dviejų ašių didelio tikslumo pozicionavimo sistemos su paketiniais pjezovykdikliais modeliavimas, taikant besideformuojančius vientiso kūno mechanizmus. Pozicionavimo sistemą sudaro besideformuojančio vientiso kūno mechanizmas ir paketiniai pjezovykdikliai. Besideformuojantis vientiso kūno mechanizmas norimam poslinkiui pasiekti buvo optimizuotas Solidworks Simulation programiniu paketu. Platformų poslinkiams apskaičiuoti sudarytas matematinis modelis, kurio patikimumas patikrintas baigtinių elementų metodu. Sudaryto matematinio modelio ir rezultatų, gautų baigtinių elementų metodu, skirtumai yra mažesni nei 5 %, todėl pasiūlyta modeliavimo metodika gali būti taikoma kuriant pozicionavimo sistemas su besideformuojančiais elementais.


Sign in / Sign up

Export Citation Format

Share Document