scholarly journals Seismic Response of Steel Moment Frames (SMFs) Considering Simultaneous Excitations of Vertical and Horizontal Components, Including Fling-Step Ground Motions

2019 ◽  
Vol 9 (10) ◽  
pp. 2079 ◽  
Author(s):  
Shahrokh Shahbazi ◽  
Armin Karami ◽  
Jong Wan Hu ◽  
Iman Mansouri

Near-field (NF) earthquakes have drawn considerable attention from earthquake and structural engineers. In the field of earthquake engineering, numerous studies have identified the devastating nature of such earthquakes, and examined the characteristics related to the response of engineering structures to these types of earthquakes. Herein, special steel moment frames (SMFs) of three-, five-, and eight-story buildings have been examined via a nonlinear time history analysis in OpenSees software. The behavioral seismic differences of these frames have been evaluated in two states: (1) under the simultaneous excitation of the horizontal and vertical constituents of near-field earthquakes that have Fling-steps in their records; and (2) under simultaneous excitation of the horizontal and vertical constituents of far-field (FF) earthquakes. In addition, during modeling, the effects of panel zones have been considered. Considering that the simultaneous effects of the horizontal and vertical constituents of near-field earthquakes were subjected to a fling-step resulting in an increased inter-story drift ratio, the horizontal displacement of stories, an axial force of columns, created the moment in columns, base shearing of the structure, and velocity and acceleration of the stories.

2016 ◽  
Vol 16 (02) ◽  
pp. 1450094 ◽  
Author(s):  
Seyed Morteza Zinati Yazdi ◽  
Mohammad Taghi Kazemi

Heavy damages on structures caused by near field earthquakes in recent years has brought serious attention to this problem. An examination of previous records has shown significant differences for near field earthquakes, including a large energy pulse, unlike far field earthquakes. But as a general rule, the effects of near field earthquakes have been ignored in most building codes. The purpose of this paper is to investigate the effect of near field earthquakes on reinforced concrete (RC) moment frames. To achieve this goal, the Erduran damage index, an efficient way to calculate damage, was employed to analyze two 4- and 8-story RC moment frame buildings. The buildings with moderate and high ductility were designed by the strength criteria. Seven pairs of near field and far field earthquakes were scaled and used for dynamic nonlinear time history analysis. Using Erduran’s beam and column damage index, respectively, based on rotation and drift, the results from both near and far field earthquakes were compared. Moreover, for better assessment, 4-story buildings were evaluated from the performance based viewpoint of design. We observe from the results that most of the components of the structures under near field earthquakes sustained severe damages and in some cases even component failure. Components of the structures under near field earthquakes suffered from 30% more of damage, on average, than that under far field earthquakes.


2006 ◽  
Vol 22 (2) ◽  
pp. 367-390 ◽  
Author(s):  
Erol Kalkan ◽  
Sashi K. Kunnath

This paper investigates the consequences of well-known characteristics of near-fault ground motions on the seismic response of steel moment frames. Additionally, idealized pulses are utilized in a separate study to gain further insight into the effects of high-amplitude pulses on structural demands. Simple input pulses were also synthesized to simulate artificial fling-step effects in ground motions originally having forward directivity. Findings from the study reveal that median maximum demands and the dispersion in the peak values were higher for near-fault records than far-fault motions. The arrival of the velocity pulse in a near-fault record causes the structure to dissipate considerable input energy in relatively few plastic cycles, whereas cumulative effects from increased cyclic demands are more pronounced in far-fault records. For pulse-type input, the maximum demand is a function of the ratio of the pulse period to the fundamental period of the structure. Records with fling effects were found to excite systems primarily in their fundamental mode while waveforms with forward directivity in the absence of fling caused higher modes to be activated. It is concluded that the acceleration and velocity spectra, when examined collectively, can be utilized to reasonably assess the damage potential of near-fault records.


2018 ◽  
Vol 2018 ◽  
pp. 1-17 ◽  
Author(s):  
Shahrokh Shahbazi ◽  
Iman Mansouri ◽  
Jong Wan Hu ◽  
Armin Karami

Seismic response of a structure is affected by its dynamic properties and soil flexibility does not have an impact on it when the bottom soil of foundation is supposedly frigid, and the soil flexibility is also ignored. Hence, utilizing the results obtained through fixed-base buildings can lead to having an insecure design. Being close to the source of an earthquake production causes the majority of earthquake’s energy to reach the structure as a long-period pulse. Therefore, near-field earthquakes produce many seismic needs so that they force the structure to dissipate output energy by relatively large displacements. Hence, in this paper, the seismic response of 5- and 8-story steel buildings equipped with special moment frames (SMFs) which have been designed based on type-II and III soils (according to the seismic code of Iran-Standard 2800) has been studied. The effects of soil-structure interaction and modeling of the panel zone were considered in all of the two structures. In order to model radiation damping and prevent the reflection of outward propagating dilatational and shear waves back into the model, the vertical and horizontal Lysmer–Kuhlemeyer dashpots as seen in the figures are adopted in the free-field boundary of soil. The selected near- and far-field records were used in the nonlinear time-history analysis, and structure response was compared in both states. The results obtained from the analysis showed that the values for the shear force, displacement, column axial force, and column moment force on type-III soil are greater than the corresponding values on type-II soil; however, it cannot be discussed for drift in general.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Yutao Pang ◽  
Li Wu

Although the knowledge and technology of performance-based earthquake engineering have rapidly advanced in the past several decades, current seismic design codes simply ignore the effect of aftershocks on the performance of structures. Thus, the present paper investigated the effect of aftershocks on seismic responses of multispan reinforced concrete (RC) bridges using the fragility-based numerical approach. For that purpose, a continuous girder RC bridge class containing 8 bridges was selected based on the statistical analysis of the existing RC bridges in China. 75 recorded mainshock-aftershock seismic sequences from 10 well-known earthquakes were selected in this study. In order to account for the uncertainty of modeling parameters, uniform design method was applied as the sampling method for generating the samples for fragility analysis. Fragility curves were then developed using nonlinear time-history analysis in terms of the peak curvature of pier column and displacement of bearings. Finally, the system fragility curves were derived by implementing Monte Carlo simulation on multinormal distribution of two components. From the results of this investigation, it was found that, for the RC continuous bridges, the influence of aftershocks can be harmful to both bridge components and system, which increases both the component fragility of the displacement of bearings and seismic curvature of pier sections and system fragility.


Author(s):  
C. S. Tsai ◽  
Tsu-Cheng Chiang ◽  
Bo-Jen Chen

Base isolation technologies have been proven to be very efficient in protecting structures from seismic hazards during experimental and theoretical studies. In recent years, there have been more and more engineering applications using base isolators to upgrade the seismic resistibility of structures. Optimum design of the base isolator can lessen the undesirable seismic hazard with the most efficiency. Hence, tracing the nonlinear behavior of the base isolator with good accuracy is important in the engineering profession. In order to predict the nonlinear behavior of base isolated structures precisely, hundreds even thousands of degrees-of-freedom and iterative algorithm are required for nonlinear time history analysis. In view of this, a simple and feasible exact formulation without any iteration has been proposed in this study to calculate the seismic responses of structures with base isolators. Comparison between the experimental results from shaking table tests conducted at National Center for Research on Earthquake Engineering in Taiwan and the analytical results show that the proposed method can accurately simulate the seismic behavior of base isolated structures with elastomeric bearings. Hence, the proposed concept can be used as a reliable tool for engineering professions for preliminary design.


2018 ◽  
Vol 34 (3) ◽  
pp. 1383-1403 ◽  
Author(s):  
Pablo Torres-Rodas ◽  
Farzin Zareian ◽  
Amit Kanvinde

Methods for the seismic design of base connections in steel moment frames are well-developed and routinely utilized by practicing engineers. However, design loads for these connections are not verified by rigorous analysis. This knowledge gap is addressed through nonlinear time history simulations using design-level seismic excitation that interrogate demands in column base connections in 2-, 4-, 8-, and 12-story steel moment frames, featuring base connections that reflect current U.S. practice. The results indicate that: (1) for exposed base plate connections, lower bound (rather than peak) estimates of axial compression are suitable for design because higher axial forces increase connection strength by delaying base plate uplift; (2) even when designed as pinned (as in low-rise frames), base connections carry significant moment, which can be estimated only through accurate representation of base flexibility; and (3) the failure of embedded base connections is controlled by moment, which may be estimated either through overstrength or capacity-based calculations.


2018 ◽  
Vol 14 (1) ◽  
pp. 21-27 ◽  
Author(s):  
Ali Vatanshenas ◽  
Mohammad Sadegh Rohanimanesh ◽  
Ehsan Mohammadiha

AbstractOne of the most important factors that make structures vulnerable to earthquakes is the short distance between structures and epicenter. Near-field earthquakes have special properties, such as increasing acceleration applied to the structure, which distinguishes them from far-field earthquakes. Therefore, the absorption of input energy for structures located near the faults is very important. Hence, by rotating the earthquake acceleration time history and comparing the resulting spectral acceleration response, the angle which applies the greatest force to the structure on the earthquake directivity side is obtained, and then the performance of a steel structure with viscoelastic dampers (VED) under near-field earthquakes with directivity feature is investigated. After analyzing the structure using nonlinear time history analysis, it was observed that the directivity phenomenon leads to significant increase in the force applied to the structure, but the viscoelastic dampers showed an acceptable performance in both states of with and without directivity.


2020 ◽  
Vol 20 (06) ◽  
pp. 2040005
Author(s):  
Han Peng ◽  
Jinping Ou ◽  
Andreas Schellenberg ◽  
Frank Mckenna ◽  
Stephen Mahin

This paper presents an investigation on the seismic behavior of steel moment frames with mechanical hinge beam-to-column connections. The connection uses a mechanical hinge to carry shear force and a pair of buckling-restrained steel plates bolted to the beam flange to transfer bending moment. The moment-rotation behavior of the connection was theoretically studied. A nonlinear numerical model for steel moment frames under strong earthquakes was developed and validated using a shaking table test of an 18-story steel moment frame at the E-Defense facility. Then, nonlinear static and time-history analyses were conducted to compare the seismic behavior of a conventional steel moment frame and three innovative steel frames equipped mechanical hinge connections in terms of roof displacement, base shear, inter-story drift ratio, and plastic hinge rotation.


2014 ◽  
Vol 14 (02) ◽  
pp. 1350062 ◽  
Author(s):  
GHOLAMREZA GHODRATI AMIRI ◽  
PEJMAN NAMIRANIAN

Simplified methods for analyzing seismically isolated structures are always used either as a design procedure or as checking criteria for the results of time history procedure. The main purpose of this study is to evaluate the accuracy of one of these methods, the capacity spectrum method (CSM), in predicting the seismic demands, such as isolator displacement and maximum base shear force, of structures with triple pendulum bearings (TPBs) under bidirectional near-field ground motions. By comparing the results of this method with those of the nonlinear time history analysis (NTHA), it can be concluded that the CSM is able to predict the maximum isolator displacement and base shear of the structure with acceptable accuracy. It should be noted that for softer soil site conditions, the values of demand calculated by CSM are sometimes underestimated compared with the results of NTHA, especially when the effective period of system exceeds 3.0 s or when the TPB works on the fifth regime of its pendulum mechanism.


Sign in / Sign up

Export Citation Format

Share Document