scholarly journals Improved Altitude Control Algorithm for Quadcopter Unmanned Aerial Vehicles

2019 ◽  
Vol 9 (10) ◽  
pp. 2122 ◽  
Author(s):  
Nguyen Xuan-Mung ◽  
Sung-Kyung Hong

Quadcopter unmanned aerial vehicles continue to play important roles in several applications and the improvement of their control performance has been explored in a great number of studies. In this paper, we present an altitude control algorithm for quadcopters that consists of a combination of nonlinear and linear controllers. The smooth transition between the nonlinear and linear modes are guaranteed through controller gains that are obtained based on mathematical analysis. The proposed controller takes advantage and addresses some known shortcomings of the conventional proportional–integral–derivative control method. The algorithm is simple to implement, and we prove its stability through the Lyapunov theory. By prescribing certain flight conditions, we use numerical simulations to compare the control performance of our control method to that of a conventional proportional–derivative–integral approach. Furthermore, we use a DJI-F450 drone equipped with a laser ranging sensor as the experimental quadcopter platform to evaluate the performance of our new controller in real flight conditions. Numerical simulation and experimental results demonstrate the effectiveness of the proposed algorithm.

2021 ◽  
pp. 107754632110501
Author(s):  
Ji-Won Lee ◽  
Nguyen Xuan-Mung ◽  
Ngoc Phi Nguyen ◽  
Sung Kyung Hong

In recent years, the boom of the quadcopter industry resulted in a broad range of real-world applications which highlighted the urgent need to improve quadcopter control quality. Typically, external disturbances, such as wind, parameter uncertainties caused by payload variations, or the ground effect, can severely degrade the quadcopter’s altitude control performance. Meanwhile, widely used controllers like the proportional-integral-derivative control cannot guarantee control performance when the system is critically affected by factors that exhibit a high degree of variability with time. In this paper, an adaptive control algorithm is proposed to improve quadcopter altitude tracking performance in the presence of both the ground effect and a time-varying payload. First, we derive an adaptive altitude control algorithm using the sliding mode control technique to account for these uncertainties in the quadcopter dynamics model. Second, we apply Lyapunov theory to analyze the stability of the closed-loop system. Finally, we conduct several numerical simulations and experiments to validate the effectiveness of the proposed method.


2014 ◽  
Vol 685 ◽  
pp. 368-372 ◽  
Author(s):  
Hao Zhang ◽  
Ya Jie Zhang ◽  
Yan Gu Zhang

In this study, we presented a boiler combustion robust control method under load changes based on the least squares support vector machine, PID parameters are on-line adjusted and identified by LSSVM, optimum control output is obtained. The simulation result shows control performance of the intelligent control algorithm is superior to traditional control algorithm and fuzzy PID control algorithm, the study provides a new control method for strong non-linear boiler combustion control system.


Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4540
Author(s):  
Leszek Ambroziak ◽  
Maciej Ciężkowski

The following paper presents a method for the use of a virtual electric dipole potential field to control a leader-follower formation of autonomous Unmanned Aerial Vehicles (UAVs). The proposed control algorithm uses a virtual electric dipole potential field to determine the desired heading for a UAV follower. This method’s greatest advantage is the ability to rapidly change the potential field function depending on the position of the independent leader. Another advantage is that it ensures formation flight safety regardless of the positions of the initial leader or follower. Moreover, it is also possible to generate additional potential fields which guarantee obstacle and vehicle collision avoidance. The considered control system can easily be adapted to vehicles with different dynamics without the need to retune heading control channel gains and parameters. The paper closely describes and presents in detail the synthesis of the control algorithm based on vector fields obtained using scalar virtual electric dipole potential fields. The proposed control system was tested and its operation was verified through simulations. Generated potential fields as well as leader-follower flight parameters have been presented and thoroughly discussed within the paper. The obtained research results validate the effectiveness of this formation flight control method as well as prove that the described algorithm improves flight formation organization and helps ensure collision-free conditions.


2019 ◽  
Vol 42 (5) ◽  
pp. 942-950
Author(s):  
Kai Chang ◽  
Dailiang Ma ◽  
Xingbin Han ◽  
Ning Liu ◽  
Pengpeng Zhao

This paper presents a formation control method to solve the moving target tracking problem for a swarm of unmanned aerial vehicles (UAVs). The formation is achieved by the artificial potential field with both attractive and repulsive forces, and each UAV in the swarm will be driven into a leader-centered spherical surface. The leader is controlled by the attractive force by the moving target, while the Lyapunov vectors drive the leader UAV to a fly-around circle of the target. Furthermore, the rotational vector-based potential field is applied to achieve the obstacle avoidance of UAVs with smooth trajectories and avoid the local optima problem. The efficiency of the developed control scheme is verified by numerical simulations in four scenarios.


2020 ◽  
Vol 12 ◽  
pp. 175682932097357
Author(s):  
E Javier Ollervides-Vazquez ◽  
Erik G Rojo-Rodriguez ◽  
Octavio Garcia-Salazar ◽  
Luis Amezquita-Brooks ◽  
Pedro Castillo ◽  
...  

This paper presents an algorithm based on fuzzy theory for the formation flight of the multi-quadrotors. For this purpose, the mathematical model of N-quadrotor unmanned aerial vehicles is presented using the Newton-Euler formulation. The strategy of the formation flight is based on a structure composed by a sectorial fuzzy controller and the linear systems whose state variables are the position and velocity of the ith quadrotor. The stability analysis is described as a generalized form for N-quadrotor unmanned aerial vehicles and it is based on the Lyapunov theory. This analysis demonstrates that the closed-loop system is globally asymptotically stable so that the quadrotors unmanned aerial vehicles reach the consensus. Numerical simulation demonstrates the robustness of the proposed scheme for the formation flight even in the presence of disturbances. Finally, experimental results show the feasibility of the proposed algorithm for the formation flight of multiple unmanned aerial vehicles.


Author(s):  
Shikai Shao ◽  
Yuanjie Zhao ◽  
Xiaojing Wu

Formation control is one of the key technologies for multiple unmanned aerial vehicles (UAVs). Compared with asymptotic or finite-time controllers, fixed-time controller can provide a guaranteed settling time, which does not depend on initial conditions and is an appealing property for controller design. Thus, robust fixed-time formation controller design for quadrotor UAVs under external disturbance and directed topology is investigated in this paper. A multi-variable super-twisting like integral sliding mode surface and a disturbance observer are respectively designed for position and attitude loops to guarantee robustness. Bi-limit homogeneity is utilized to design the whole closed-loop fixed-time controllers. By skillfully using bi-limit homogeneity technique and Lyapunov theory, the comprehensive stability of position and attitude loops is addressed. Finally, the multiple UAVs are utilized to track a pre-planned trajectory in 3D space and simulation results illustrate that the settling time can be reduced about 40% compared with finite-time controllers.


Author(s):  
Yannick Morel ◽  
Alexander Leonessa

This paper presents a novel adaptive control algorithm solving the trajectory tracking problem for quadrotor aerial vehicles. A model reference approach is used, such that the vehicle tracks the trajectory of a reference system, which itself tracks a specified desired trajectory. The control law is derived using a backstepping procedure. A technique derived from dynamic surface control is used to simplify the expression of the obtained control algorithm, with no significant loss in terms of performance. Proof of stability is obtained using Lyapunov theory. Results from numerical simulations illustrate the performance of the obtained controller.


Sign in / Sign up

Export Citation Format

Share Document