scholarly journals Optimization of Nonspherical Gold Nanoparticles for Photothermal Therapy

2019 ◽  
Vol 9 (20) ◽  
pp. 4300
Author(s):  
Paerhatijiang Tuersun ◽  
Xiayiding Yakupu ◽  
Xiang’e Han ◽  
Yingzeng Yin

Previous investigations devoted to the optimization of nonspherical gold nanoparticles for photothermal therapy (PTT) encountered two issues, namely, the appropriate selection of objective functions and the processing of particle random orientations. In this study, these issues were resolved, and accurate optimization results were obtained for the three typical nonspherical gold nanoparticles (nanospheroid, nanocylinder, and nanorod) by using the T-matrix method. The dependence of the optimization results on the excitation wavelength and the refractive index of tissue was investigated. Regardless of the excitation wavelength and tissue type, gold nanospheroids were found to be the most effective therapeutic agents for PTT. The light absorption ability of optimized nanoparticles could be enhanced by using a laser with a longer wavelength. Finally, the design tolerance for the different sizes of nanoparticles was provided.

1979 ◽  
Vol 44 (7) ◽  
pp. 2064-2078 ◽  
Author(s):  
Blahoslav Sedláček ◽  
Břetislav Verner ◽  
Miroslav Bárta ◽  
Karel Zimmermann

Basic scattering functions were used in a novel calculation of the turbidity ratios for particles having the relative refractive index m = 1.001, 1.005 (0.005) 1.315 and the size α = 0.05 (0.05) 6.00 (0.10) 15.00 (0.50) 70.00 (1.00) 100, where α = πL/λ, L is the diameter of the spherical particle, λ = Λ/μ1 is the wavelength of light in a medium with the refractive index μ1 and Λ is the wavelength of light in vacuo. The data are tabulated for the wavelength λ = 546.1/μw = 409.357 nm, where μw is the refractive index of water. A procedure has been suggested how to extend the applicability of Tables to various refractive indices of the medium and to various turbidity ratios τa/τb obtained with the individual pairs of wavelengths λa and λb. The selection of these pairs is bound to the sequence condition λa = λ0χa and λb = λ0χb, in which b-a = δ = 1, 2, 3; a = -2, -1, 0, 1, 2, ..., b = a + δ = -1, 0, 1, 2, ...; λ0 = λa=0 = 326.675 nm; χ = 546.1 : 435.8 = 1.2531 is the quotient of the given sequence.


Lab on a Chip ◽  
2015 ◽  
Vol 15 (3) ◽  
pp. 735-744 ◽  
Author(s):  
Yamin Yang ◽  
Xiaochuan Yang ◽  
Jin Zou ◽  
Chao Jia ◽  
Yue Hu ◽  
...  

A microfluidic-based in vitro three-dimensional (3D) breast cancer tissue model was established for determining the efficiency of photodynamic therapy (PDT) with therapeutic agents (photosensitizer and gold nanoparticles) under various irradiation conditions.


Robotica ◽  
1995 ◽  
Vol 13 (3) ◽  
pp. 287-295 ◽  
Author(s):  
Venugopal K. Varma ◽  
Uri Tasch

SummaryWhen an object is held by a multi-fingered hand, the values of the contact forces can be multivalued. An objective function, when used in conjunction with the frictional and geometric constraints of the grasp, can however, give a unique set of finger force values. The selection of the objective function in determining the finger forces is dependent on the type of grasp required, the material properties of the object, and the limitations of the röbot fingers. In this paper several optimization functions are studied and their merits highlighted. The paper introduces a graphical representation of the finger force values and the objective functions that enable one to select and compare various grasping configurations. The impending motion of the object at different torque and finger force values are determined by observing the normalized coefficient of friction plots.


2019 ◽  
Vol 554 ◽  
pp. 256-263 ◽  
Author(s):  
Nihal S. Elbialy ◽  
Mohamed M. Fathy ◽  
Reem AL-Wafi ◽  
Reem Darwesh ◽  
Umama A. Abdel-dayem ◽  
...  

2010 ◽  
Vol 19 (03) ◽  
pp. 427-436
Author(s):  
A. MENDOZA-GARCÍA ◽  
A. ROMERO-DEPABLOS ◽  
M. A. ORTEGA ◽  
J. L. PAZ ◽  
L. ECHEVARRÍA

We have developed an analytical method to describe the optical properties of nanoparticles, whose results are in agreement with the observed experimental behavior according to the size of the nanoparticle under analysis. Our considerations to describe plasmonic absorption and dispersion are based on the combination of the two-level molecular system and the two-dimensional quantum box models. Employing the optical stochastic Bloch equations, we have determined the system's coherence, from which we have calculated expressions for the absorption coefficient and refractive index. The innovation of this methodology is that it allows us to take into account the solvent environment, which induce quantum effects not considered by classical treatments.


2010 ◽  
Author(s):  
Georgy G. Akchurin ◽  
Akchurin G. Garif ◽  
Irina L. Maksimova ◽  
Alexander A. Skaptsov ◽  
Georgy S. Terentyuk ◽  
...  

2007 ◽  
Vol 7 (12) ◽  
pp. 4333-4338
Author(s):  
Gulay Ertas ◽  
Sefik Suzer

Optical properties of plasmon coupled silver and gold nanoparticles were studied as a function of the refractive index of the surrounding medium. Our studies confirmed that the effect of changes in the refractive index of the surrounding medium was more difficult to demonstrate from an experimental point of view, because of the very high susceptibility of nanoparticles to aggregate in aqueous and organic solvents. Whereas the position of the absorption bands of triiodide in these solvents shows a clear dependence on medium's refractive index, the surface plasmon band position of silver and gold nanoparticles do not exhibit the same dependence. This is attributed to a non-negligible interaction of these solvents with nanoparticle surfaces.


Sign in / Sign up

Export Citation Format

Share Document