scholarly journals Improvement Effect of Green Lubricants on the Tribological and Mechanical Performance of 4140 Steel

2019 ◽  
Vol 9 (22) ◽  
pp. 4896 ◽  
Author(s):  
María T. Hernández-Sierra ◽  
Micael G. Bravo-Sánchez ◽  
José E. Báez ◽  
Luis D. Aguilera-Camacho ◽  
J. Santos García-Miranda ◽  
...  

Although much has been learned and investigated about environmentally friendly lubricants in recent years, several issues remain critical to their use in specific applications. A key point that could be limiting their utilization is that the effect of green lubricants on the tribological and mechanical properties of the elements has not been thoroughly studied since such attributes determine their performance in industrial applications. For this reason, in this research, the effect of green lubrication on the tribological and hardness properties of AISI 4140 steel was studied. The performance of three bio-based lubricants was studied and compared to that of five of the most representative lubricants. First, the lubricants were chemically and physically characterized. Then, the effect of each lubricant on the friction and wear behavior of the system was analyzed by kinetic friction coefficient, wear rate calculations, and microhardness measurements. In general, the bio-based lubricants exhibited the lowest values of friction and wear. Further the mechanical properties of the systems lubricated by these lubricants were not affected or were affected to a lesser degree.

2017 ◽  
Vol 140 (2) ◽  
Author(s):  
Mürsel Ekrem ◽  
Hayrettin Düzcükoğlu ◽  
Muhammet Ali Şenyurt ◽  
Ömer Sinan Şahin ◽  
Ahmet Avcı

In this study, the effects of addition of boron nitride nanoplatelets (BNNPs) upon friction and wear behavior of epoxy resin have been investigated by using pin-on-disk test. It has been reported in the literature that certain amounts of BNNP addition can be useful for enhancement of mechanical properties. Therefore, it is very important to obtain the effect of such addition upon friction and wear performance of epoxy resin. BNNPs have been incorporated at 0.3–0.5–0.7–1 wt %. It is shown that BNNP addition results in decrease in friction coefficient and wear. It is also shown that the best results are obtained with 0.5% nanoplatelet addition. It is also observed that heat conduction of epoxy resin is enhanced by the nanoplatelet addition.


2011 ◽  
Vol 304 ◽  
pp. 6-11 ◽  
Author(s):  
Xiao Qian Qi ◽  
Xu Ping Zhang

Al-matrix self-lubricating which added MoS2 as solid lubricant was prepared by casting under variation in content of Si、Fe、Mn、MoS2、Cr3C2. Friction and wear behavior were investigated on MPX-2000 friction and abrasion machine. The microscopic structure and phases were analyzed by metallographic microscopic and XRD. The results show that the main factor influencing friction coefficient is Si, it can reduce the wear rate. Addition of MoS2 can reduce friction coefficient, Fe is used to improve the mechanical properties. Cr3C2 enhances the wear resistance.


2019 ◽  
Vol 141 (5) ◽  
Author(s):  
Carlton J. Reeves ◽  
Arpith Siddaiah ◽  
Pradeep L. Menezes

The sustainability of biolubricants as green alternatives for industrial and machinery lubrication is questionable due to their unreliable oxidative stability, high pour point, and easy accumulation of contaminants that affect their tribological performance. Bio-based ionic liquid (IL) lubricants, which are environmentally friendly liquid state salts, have overcome these concerns related to conventional biolubricants. The present study investigates the effect of varying cation–anion moieties in ILs to understand their tribological performance and industrial viability. The industrial viability was analyzed by scaling their friction and wear behaviors against conventional biolubricants, and petroleum-based oils. The study investigated both bio- and nonbio-based ILs. Among the ILs examined, P666,14Saccharinate, P666,14Salicyate, and P666,14Benzoate were found to have superior tribological properties. The presence of large alkyl cation chain length and large aromatic anion ring size in ILs can effectively reduce friction and wear. This study details the mechanism by which the structural combinations of anion and cation in ILs define the tribological behavior of the bulk IL. Additionally, this study also highlights the environmentally benign nature of IL lubricants for possible industrial applications.


Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1058
Author(s):  
Hikaru Okubo ◽  
Haruka Kaneyasu ◽  
Tetsuya Kimura ◽  
Patchiya Phanthong ◽  
Shigeru Yao

Each year, increasing amounts of plastic waste are generated, causing environmental pollution and resource loss. Recycling is a solution, but recycled plastics often have inferior mechanical properties to virgin plastics. However, studies have shown that holding polymers in the melt state before extrusion can restore the mechanical properties; thus, we propose a twin-screw extruder with a molten resin reservoir (MSR), a cavity between the screw zone and twin-screw extruder discharge, which retains molten polymer after mixing in the twin-screw zone, thus influencing the polymer properties. Re-extruded recycled polyethylene (RPE) pellets were produced, and the tensile properties and microstructure of virgin polyethylene (PE), unextruded RPE, and re-extruded RPE moldings prepared with and without the MSR were evaluated. Crucially, the elongation at break of the MSR-extruded RPE molding was seven times higher than that of the original RPE molding, and the Young’s modulus of the MSR-extruded RPE molding was comparable to that of the virgin PE molding. Both the MSR-extruded RPE and virgin PE moldings contained similar striped lamellae. Thus, MSR re-extrusion improved the mechanical performance of recycled polymers by optimizing the microstructure. The use of MSRs will facilitate the reuse of waste plastics as value-added materials having a wide range of industrial applications.


2021 ◽  
Vol 6 (6) ◽  
pp. 1288-1296
Author(s):  
Hongming Wie ◽  
Jianpeng Zou ◽  
Xiaoya Li ◽  
Cong Xiao

Sign in / Sign up

Export Citation Format

Share Document