scholarly journals Actively Tunable Metalens Array Based on Patterned Phase Change Materials

2019 ◽  
Vol 9 (22) ◽  
pp. 4927 ◽  
Author(s):  
Wei Bai ◽  
Ping Yang ◽  
Shuai Wang ◽  
Jie Huang ◽  
Dingbo Chen ◽  
...  

Recently, the metalens has been investigated for its application in many fields due to its advantages of being much smaller than a conventional lens and is compatible with nano-devices. Although metalenses have extraordinary optical performance, it is still not enough in some occasions such as wavefront detection for adaptive optics and display for large area applications. Using a metalens array is an ideal solution to solve these problems. Unfortunately, the common metalens array cannot be adjusted once it is fabricated, which limits its range of application. In this article, we designed an actively tunable metalens array for the first time by arranging the patterned phase change material Ge2Sb2Te5 (GST) appropriately. For the metalens array designed at the wavelength of 4.6 μm, it had excellent broadband performance in the range from 4.5 μm to 5.2 μm. On the other hand, by tuning the phase state of GST, the focus and display of the metalens array can be controlled, acting as switching on or off. Furthermore, any graphics constructed with patterned focal spots can be achieved when the metalens array has sufficient secondary unit cells. The proposed metalens may have potential application value in the adaptive optics and dynamic display field.

Nanomaterials ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 993 ◽  
Author(s):  
Wei Bai ◽  
Ping Yang ◽  
Shuai Wang ◽  
Jie Huang ◽  
Dingbo Chen ◽  
...  

Metalenses recently have attracted attention because of their more compact size in comparison with conventional lenses; they can also achieve better optical performance with higher resolution. Duplexer is an interesting function of a metalens that can distinguish different sources and divide them into two parts for specific purposes. In this article, we design tunable duplex metalenses with phase-change material Ge2Sb2Te5 for the first time. Two types of special unit cells are designed to modulate the incident lights, and four metalenses are designed based on the two types of unit cells. Specific phase profiles are calculated for different sections of metalens in which the corresponding unit cells are settled; accordingly, the metalenses can focus the incident lights at any positions according to our design. Moreover, the metalenses become selectable via tuning the state of phase-change material, which means that the output light field can be actively controlled. The proposal of our tunable duplex metalenses will offer new opportunities for active three-dimensional imaging or optical coding.


2013 ◽  
Vol 291-294 ◽  
pp. 1153-1158
Author(s):  
Quan Ying Yan ◽  
Ran Huo ◽  
Li Hang Yue ◽  
Lin Zhang ◽  
Li Li Jin

This paper investigated the heat transfer and mechanical property of phase change material (PCM) walls and common wall. Three mixtures of liquid paraffin-46# paraffin, liquid paraffin- lauric acid and capric-myristic acid were prepared and mixed respectively with high-density polyethylene (HDPE) to prepare shape-stabilized phase change materials. Then direct mixing method was used to add these materials into cement mortar in order to make phase change walls. The results shows that the temperatures and heat flow on phase change walls’ surface are all lower than those of common wall; PCMs of different thermal properties have a more and more obvious distinction in heat storage performance with the increasing content of them added in the wall; PCM walls have lower compressive strength than the common one. Results can provide the basis for the application of phase change material walls in real buildings.


2013 ◽  
Vol 135 (5) ◽  
Author(s):  
Haoshan Ge ◽  
Jing Liu

With many emerging capabilities in pervasive computing, internet access, wireless communication, and data processing, the smartphone with high central processing unit (CPU) frequency is achieving extremely high running speed which also brings about discomfort to the users due to huge heat released. Here, an automatic temperature regulation strategy using low melting point metal gallium to absorb transitory heat was proposed for the first time. Experiments demonstrate that 3.4125 ml gallium would maintain the module below 45 °C for 16 min at 2.832 W. Such temperature holding time was longer than most of the conventional phase change materials (PCMs). Moreover, some interesting phase change phenomena were also discovered such that mixing SiO2 powder with gallium or just shaking the liquid metal container will help reduce the large supercooling of gallium which is beneficial for the material to quickly recover to its original service state again. The method is expected to be very useful and efficient in maintaining thermal comfort of many handheld electronics, especially for the burgeoning smartphones and panel personal computer (PPC).


2010 ◽  
Vol 297-301 ◽  
pp. 154-161 ◽  
Author(s):  
Thomas Fiedler ◽  
Irina V. Belova ◽  
Andreas Öchsner ◽  
Graeme E. Murch

Heat sinks enable the storage of energy that would otherwise be lost, thus ensuring significant energy-savings and fewer greenhouse gas emissions. Heat sinks also play the major role in the efficient temperature control of devices such as batteries. In principle, any material can act as a heat sink – traditionally, copper is used for many applications. However, copper is relatively expensive, has a high density and only a limited energy storage capacity. In contrast, a phase-change material (PCM) allows in effect an additional storage of energy through its phase change thus greatly increasing the achievable energy density. The aim of this work is the numerical analysis of the transient heat transfer in composite heat sinks containing phase-change materials. For the first time, a recently formulated Lattice Monte Carlo Method is applied to determine temperature distributions and the amount of energy transferred versus time in phase change materials.


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3033
Author(s):  
Anastasia Stamatiou ◽  
Lukas Müller ◽  
Roger Zimmermann ◽  
Jamie Hillis ◽  
David Oliver ◽  
...  

Latent heat storage units for refrigeration processes are promising as alternatives to water/glycol-based storage due to their significantly higher energy densities, which would lead to more compact and potentially more cost-effective storages. In this study, important thermophysical properties of five phase change material (PCM) candidates are determined in the temperature range between −22 and −35 °C and their compatibility with relevant metals and polymers is investigated. The goal is to complement existing scattered information in literature and to apply a consistent testing methodology to all PCMs, to enable a more reliable comparison between them. More specifically, the enthalpy of fusion, melting point, density, compatibility with aluminum, copper, polyethylene (PE), polypropylene (PP), neoprene and butyl rubber, are experimentally determined for 1-heptanol, n-decane, propionic acid, NaCl/water mixtures, and Al(NO3)3/water mixtures. The results of the investigations reveal individual strengths and weaknesses of the five candidates. Further, 23.3 wt.% NaCl in water stands out for its very high volumetric energy density and n-decane follows with a lower energy density but better compatibility with surrounding materials and supercooling performance. The importance of using consistent methodologies to determine thermophysical properties when the goal is to compare PCM performance is highlighted.


Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 724
Author(s):  
Macmanus Chinenye Ndukwu ◽  
Lyes Bennamoun ◽  
Merlin Simo-Tagne

The application of thermal storage materials in solar systems involves materials that utilize sensible heat energy, thermo-chemical reactions or phase change materials, such as hydrated salts, fatty acids paraffin and non-paraffin like glycerol. This article reviews the various exergy approaches that were applied for several solar systems including hybrid solar water heating, solar still, solar space heating, solar dryers/heaters and solar cooking systems. In fact, exergy balance was applied for the different components of the studied system with a particular attention given to the determination of the exergy efficiency and the calculation of the exergy during charging and discharging periods. The influence of the system configuration and heat transfer fluid was also emphasized. This review shows that not always the second law of thermodynamics was applied appropriately during modeling, such as how to consider heat charging and discharging periods of the tested phase change material. Accordingly, the possibility of providing with inappropriate or not complete results, was pointed.


2018 ◽  
Vol 25 (6) ◽  
pp. 1157-1165
Author(s):  
Taoufik Mnasri ◽  
Adel Abbessi ◽  
Rached Ben Younes ◽  
Atef Mazioud

AbstractThis work focuses on identifying the thermal conductivity of composites loaded with phase-change materials (PCMs). Three configurations are studied: (1) the PCMs are divided into identical spherical inclusions arranged in one plane, (2) the PCMs are inserted into the matrix as a plate on the level of the same plane of arrangement, and (3) the PCMs are divided into identical spherical inclusions arranged periodically in the whole matrix. The percentage PCM/matrix is fixed for all cases. A comparison among the various situations is made for the first time, thus providing a new idea on how to insert PCMs into composite matrices. The results show that the composite conductivity is the most important consideration in the first case, precisely when the arrangement plane is parallel with the flux and diagonal to the entry face. In the present work, we are interested in exploring the solid-solid PCMs. The PCM polyurethane and a wood matrix are particularly studied.


Author(s):  
Ali Deriszadeh ◽  
Filippo de Monte ◽  
Marco Villani

Abstract This study investigates the cooling performance of a passive cooling system for electric motor cooling applications. The metal-based phase change materials are used for cooling the motor and preventing its temperature rise. As compared to oil-based phase change materials, these materials have a higher melting point and thermal conductivity. The flow field and transient heat conduction are simulated using the finite volume method. The accuracy of numerical values obtained from the simulation of the phase change materials is validated. The sensitivity of the numerical results to the number of computational elements and time step value is assessed. The main goal of adopting the phase change material based passive cooling system is to maintain the operational motor temperature in the allowed range for applications with high and repetitive peak power demands such as electric vehicles by using phase change materials in cooling channels twisted around the motor. Moreover, this study investigates the effect of the phase change material container arrangement on the cooling performance of the under study cooling system.


2018 ◽  
Vol 281 ◽  
pp. 131-136
Author(s):  
Shi Chao Zhang ◽  
Wei Wu ◽  
Yu Feng Chen ◽  
Liu Shi Tao ◽  
Kai Fang ◽  
...  

With the increase of the speed of vehicle, the thermal protection system of its powerplant requires higher insulation materials. Phase change materials can absorb large amounts of heat in short time. So the introduction of phase change materials in thermal insulation materials can achieve efficient insulation in a limited space for a short time. In this paper, a new phase change thermal insulation material was prepared by pressure molding with microporous calcium silicate as matrix and Li2CO3 as phase change material. The morphology stability, exudation and heat insulation of the materials were tested. The results show that the porous structure of microporous calcium silicate has a good encapsulation when the phase transition of Li2CO3 is changed into liquid. And the material has no leakage during use. The thermal performance test also shows that the insulation performance of the material has obvious advantages in the short term application.


Sign in / Sign up

Export Citation Format

Share Document