scholarly journals Measurement of Atmospheric Turbulence Characteristics by the Ultrasonic Anemometers and the Calibration Processes

Atmosphere ◽  
2019 ◽  
Vol 10 (8) ◽  
pp. 460 ◽  
Author(s):  
Victor Nosov ◽  
Vladimir Lukin ◽  
Eugene Nosov ◽  
Andrei Torgaev ◽  
Aleksandr Bogushevich

In ultrasonic equipment (anemometers and thermometers), for the measurement of parameters of atmospheric turbulence, a standard algorithm that calculates parameters from temporary structural functions constructed on the registered data is usually used. The algorithm is based on the Kolmogorov–Obukhov law. The experience of using ultrasonic meters shows that such an approach can lead to significant errors. Therefore, an improved algorithm for calculating the parameters is developed, which allows more accurate estimation of the structural characteristics of turbulent fluctuations, with an error that is not more than 10%. The algorithm was used in the development of a new ultrasonic hardware-software complex, autonomous meteorological complex AMK-03-4, which differs from similar measuring instruments of turbulent atmosphere parameters by the presence of four identical ultrasonic anemometers. The design of the complex allows not only registration of the characteristics of turbulence, but also measurement of the statistical characteristics of the spatial derivatives of turbulent temperature fluctuations and orthogonal components of wind speed along each of the axes of the Cartesian coordinate system. This makes it possible to investigate the space–time structure of turbulent meteorological fields of the surface layer of the atmosphere for subsequent applications in the Monin–Obukhov similarity theory and to study turbulent coherent structures. The new measurement data of the spatial derivatives of temperature at stable stratification (at positive Monin–Obukhov parameters) were obtained, at which the behavior of the derivatives was been investigated earlier. In the most part of the interval of positive Monin–Obukhov parameters, the vertical derivative of the temperature is close to a constant value. This fact can be considered as a new significant result in similarity theory.

2018 ◽  
pp. 76-84
Author(s):  
K. V. Sorokin ◽  
E. A. Sunarchina

Improvement of orbits precision is one of the most important tasks of space surveillance catalogue maintenance. The solution of this problem is directly related to an adequate consideration of the errors of the coordinate information from the measuring instruments. The article consideresd a new method for estimating the precision of measuring instruments on the catalog orbits. To carry out such analysis, in PJSC «VIMPEL» special technological program was created. Main results of a study of radar errors with orbits of space surveillance catalogue was presented. Also, the results were compared with data of measuring instrument's calibration software complex. This software complex provides determination of satellite's position with errors less than 10 m. A new dynamic model of measuring instrument errors is proposed.


2018 ◽  
Vol 24 (23) ◽  
pp. 5650-5664 ◽  
Author(s):  
Shang–Teh Wu ◽  
Shan-Qun Tang ◽  
Kuan–Po Huang

This paper investigates the vibration control of a two-link flexible manipulator carried by a translational stage. The first and the second links are each driven by a stage motor and a joint motor. By treating the joint motor as a virtual spring, the two-link manipulator can be regarded as an integral flexible arm driven by the stage motor. A noncollocated controller is devised based on feedback from the deflection of the virtual spring, which can be measured by a shaft encoder. Stability of the closed-loop system is analyzed by examining the spatial derivatives of the modal functions. By including a bandpass filter in the feedback loop, residual vibrations can be attenuated without exciting high-frequency vibrations. The control method is simple to implement; its effectiveness is confirmed by simulation and experimental results.


1983 ◽  
Vol 29 (2) ◽  
pp. 243-253 ◽  
Author(s):  
Tomikazu Namikawa ◽  
Hiromitsu Hamabata

The ponderomotive force generated by random Alfvén waves in a collisionless plasma is evaluated taking into account mean magnetic and velocity shear and is expressed as a series involving spatial derivatives of mean magnetic and velocity fields whose coefficients are associated with the helicity spectrum function of random velocity field. The effect of microscale random Alfvén waves through ponderomotive and mean electromotive forces generated by them on the propagation of large-scale Alfvén waves is also investigated.


2021 ◽  
Vol 5 (4) ◽  
pp. 203
Author(s):  
Suzan Cival Buranay ◽  
Nouman Arshad ◽  
Ahmed Hersi Matan

We give fourth-order accurate implicit methods for the computation of the first-order spatial derivatives and second-order mixed derivatives involving the time derivative of the solution of first type boundary value problem of two dimensional heat equation. The methods are constructed based on two stages: At the first stage of the methods, the solution and its derivative with respect to time variable are approximated by using the implicit scheme in Buranay and Arshad in 2020. Therefore, Oh4+τ of convergence on constructed hexagonal grids is obtained that the step sizes in the space variables x1, x2 and in time variable are indicated by h, 32h and τ, respectively. Special difference boundary value problems on hexagonal grids are constructed at the second stages to approximate the first order spatial derivatives and the second order mixed derivatives of the solution. Further, Oh4+τ order of uniform convergence of these schemes are shown for r=ωτh2≥116,ω>0. Additionally, the methods are applied on two sample problems.


2021 ◽  
Vol 6 ◽  
pp. 4-17
Author(s):  
V.V Koval ◽  
D.V. Miroshnichenko ◽  
O.V. Bogoyavlenska

The article substantiates the importance and problems of determining of such an indicator of the quality of solid fossil fuels, as mechanical strength. The strength of coal depends on a large number of factors (viscosity, brittleness, properties of structural bonds, etc.), the change of which is impossible to take into account. Therefore, the strength of coal in the sample, piece, pack and formation must be represented by some integral index, which inevitably fluctuates around a certain average value and can be determined only approximately. The evaluation of the strength properties of coal should be carried out on the basis of mass tests using statistical methods that allow to calculate the average value and coefficient of variation. Since the strength dispersion is mainly due to the natural inhomogeneity of the coal, the excessive accuracy of the measuring instruments has almost no effect on the statistical characteristics. Laboratory methods of mechanical tests of mine samples, in comparison with full-scale, as a rule, are very accessible and, at qualitative performance of tests, are highly reliable. The properties of coal as an object of enrichment and use are largely related to its physical properties. The physical properties of coal and mineral impurities significantly affect the formation of the main parameters that characterize the particle size distribution and fractional composition, it`s changes during the mining, transportation and enrichment processes. The basic physical and mechanical properties of solid fuels from the point of view of their industrial processing have been listed, the review has been made of the most widespread methods of study of coals mechanical durability and the equipment used for these purposes. The main advantages and disadvantages have been summarized of these methods, as well as their relationship. The factors have been Indicated tinfluencing the mechanical strength of coal. The expediency of using existing methods from the point of view of informativeness for thesphere of its application has been estimated. The methods common in the coal processing industry are considered in more detail. Keywords: coal, solid fuel mining, mechanical strength, determination methods, influencing factors, grinding strength, crushing index. Corresponding author V.V. Koval, e-mail: [email protected]


2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
N. Mindu ◽  
D. P. Mason

The derivation of conservation laws for the magma equation using the multiplier method for both the power law and exponential law relating the permeability and matrix viscosity to the voidage is considered. It is found that all known conserved vectors for the magma equation and the new conserved vectors for the exponential laws can be derived using multipliers which depend on the voidage and spatial derivatives of the voidage. It is also found that the conserved vectors are associated with the Lie point symmetry of the magma equation which generates travelling wave solutions which may explain by the double reduction theorem for associated Lie point symmetries why many of the known analytical solutions are travelling waves.


Geophysics ◽  
2001 ◽  
Vol 66 (1) ◽  
pp. 174-187 ◽  
Author(s):  
William Rodi ◽  
Randall L. Mackie

We investigate a new algorithm for computing regularized solutions of the 2-D magnetotelluric inverse problem. The algorithm employs a nonlinear conjugate gradients (NLCG) scheme to minimize an objective function that penalizes data residuals and second spatial derivatives of resistivity. We compare this algorithm theoretically and numerically to two previous algorithms for constructing such “minimum‐structure” models: the Gauss‐Newton method, which solves a sequence of linearized inverse problems and has been the standard approach to nonlinear inversion in geophysics, and an algorithm due to Mackie and Madden, which solves a sequence of linearized inverse problems incompletely using a (linear) conjugate gradients technique. Numerical experiments involving synthetic and field data indicate that the two algorithms based on conjugate gradients (NLCG and Mackie‐Madden) are more efficient than the Gauss‐Newton algorithm in terms of both computer memory requirements and CPU time needed to find accurate solutions to problems of realistic size. This owes largely to the fact that the conjugate gradients‐based algorithms avoid two computationally intensive tasks that are performed at each step of a Gauss‐Newton iteration: calculation of the full Jacobian matrix of the forward modeling operator, and complete solution of a linear system on the model space. The numerical tests also show that the Mackie‐Madden algorithm reduces the objective function more quickly than our new NLCG algorithm in the early stages of minimization, but NLCG is more effective in the later computations. To help understand these results, we describe the Mackie‐Madden and new NLCG algorithms in detail and couch each as a special case of a more general conjugate gradients scheme for nonlinear inversion.


2012 ◽  
Vol 77 (9) ◽  
pp. 1129-1155 ◽  
Author(s):  
Ljiljana Vojinovic-Jesic ◽  
Sladjana Novakovic ◽  
Vukadin Leovac ◽  
Valerija Cesljevic

This is the first review dealing with the coordination chemistry of metal complexes with Girard's reagents and their hydrazones. The short introduction points out to chemical properties and significance of these organic compounds. The next section briefly describes synthetic methods for preparing complexes with Girard's reagents, as well as modes of coordination of these ligands. The last two extensive sections review the preparation, stereochemistry and structural characteristics of metal complexes with Girard's hydrazones, including some newer non-hydrazonic derivatives of Girard's reagents, also.


2015 ◽  
Vol 15 (17) ◽  
pp. 9929-9944 ◽  
Author(s):  
J. Chen ◽  
Y. Hu ◽  
Y. Yu ◽  
S. Lü

Abstract. The ergodic hypothesis is a basic hypothesis typically invoked in atmospheric surface layer (ASL) experiments. The ergodic theorem of stationary random processes is introduced to analyse and verify the ergodicity of atmospheric turbulence measured using the eddy-covariance technique with two sets of field observational data. The results show that the ergodicity of atmospheric turbulence in atmospheric boundary layer (ABL) is relative not only to the atmospheric stratification but also to the eddy scale of atmospheric turbulence. The eddies of atmospheric turbulence, of which the scale is smaller than the scale of the ABL (i.e. the spatial scale is less than 1000 m and temporal scale is shorter than 10 min), effectively satisfy the ergodic theorems. Under these restrictions, a finite time average can be used as a substitute for the ensemble average of atmospheric turbulence, whereas eddies that are larger than ABL scale dissatisfy the mean ergodic theorem. Consequently, when a finite time average is used to substitute for the ensemble average, the eddy-covariance technique incurs large errors due to the loss of low-frequency information associated with larger eddies. A multi-station observation is compared with a single-station observation, and then the scope that satisfies the ergodic theorem is extended from scales smaller than the ABL, approximately 1000 m to scales greater than about 2000 m. Therefore, substituting the finite time average for the ensemble average of atmospheric turbulence is more faithfully approximate the actual values. Regardless of vertical velocity or temperature, the variance of eddies at different scales follows Monin–Obukhov similarity theory (MOST) better if the ergodic theorem can be satisfied; if not it deviates from MOST. The exploration of ergodicity in atmospheric turbulence is doubtlessly helpful in understanding the issues in atmospheric turbulent observations and provides a theoretical basis for overcoming related difficulties.


Sign in / Sign up

Export Citation Format

Share Document