scholarly journals A Wind Tunnel Study on the Correlation between Urban Space Quantification and Pedestrian–Level Ventilation

Atmosphere ◽  
2019 ◽  
Vol 10 (10) ◽  
pp. 564 ◽  
Author(s):  
Li ◽  
Peng ◽  
Ji ◽  
Hu ◽  
Ding

Correlation research on urban space and pedestrian–level wind (PLW) environments is helpful for improving the wind comfort in complex urban space. It could also be significant for building and urban design. Correlation research is usually carried out in a space with clear urban spatial characteristics, so it is necessary to define the space first. In this paper, a typical urban area in Nanjing, China, is selected as the research object, and a spatial partition method is used to divide the real complex urban space into subspaces. The urban spatial characteristics of such subspaces are quantified using three urban spatial indices: openness (O), area (A), and shape (S). By comparing the quantitative results, 24 (12 pairs) subspaces with prominent urban spatial indices are selected as the correlation research cases. The 24 subspaces also provide a reference for the layout of the measurement points in a wind tunnel experiment. This is a new arrangement for locating the measurement points of a wind tunnel for correlation research. In the experiment, 45 measurement points are located, and the mean wind velocity of four different wind directions at 45 measurement points is experimented. The results clearly show that, when the experimental conditions are the same, the changes of mean wind velocity ratio (UR) of 24 (12pairs) subspaces under the four experimental wind directions are close. The URs of the subspaces are not significantly affected by the wind direction, which is affected more by the subspaces’ spatial characteristics. When making the correlation analysis between mean wind speed ratio and spatial characteristics’ indices, a direct numerical comparison was not able to find a correlation. By comparing the difference values of mean wind speed (△UR) and indices between each pair of subspaces, the correlation between UR and openness of subspaces were found. Limited by spatial partition method, the correlation between UR and the other indices was not obvious.

2012 ◽  
Vol 215-216 ◽  
pp. 1323-1326
Author(s):  
Ming Wei Xu ◽  
Jian Jun Qu ◽  
Han Zhang

A small vertical axis wind turbine with wind speed self-adapting was designed. The diameter and height of the turbine were both 0.7m. It featured that the blades were composed of movable and fixed blades, and the opening and closing of the movable blades realized the wind speed self-adapting. Aerodynamic performance of this new kind turbine was tested in a simple wind tunnel. Then the self-starting and power coefficient of the turbine were studied. The turbine with load could reliably self-start and operate stably even when the wind velocity was only 3.6 m/s. When the wind velocity was 8 m/s and the load torque was 0.1Nm, the movable blades no longer opened and the wind turbine realized the conversion from drag mode to lift mode. With the increase of wind speed, the maximum power coefficient of the turbine also improves gradually. Under 8 m/s wind speed, the maximum power coefficient of the turbine reaches to 12.26%. The experimental results showed that the new turbine not only improved the self-starting ability of the lift-style turbine, but also had a higher power coefficient in low tip speed ratio.


Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6167
Author(s):  
Fang Feng ◽  
Guoqiang Tong ◽  
Yunfei Ma ◽  
Yan Li

In order to get rid of the impact of the global financial crisis and actively respond to global climate change, it has become a common choice for global economic development to develop clean energy such as wind energy, improve energy efficiency and reduce greenhouse gas emissions. With the advantages of simple structure, unnecessary facing the wind direction, and unique appearance, the vertical axis wind turbine (VAWT) attracts extensive attention in the field of small and medium wind turbines. The lift-type VAWT exhibits outstanding aerodynamic characteristics at a high tip speed ratio, while the starting characteristics are generally undesirable at a low wind speed; thus, how to improve the starting characteristics of the lift-type VAWT has always been an important issue. In this paper, a lift-drag combined starter (LDCS) suitable for lift-type VAWT was proposed to optimize the starting characteristics of lift-type VAWT. With semi-elliptical drag blades and lift blades equipped on the middle and rear part outside the starter, the structure is characterized by lift-drag combination, weakening the adverse effect of the starter with semi-elliptical drag blades alone on the output performance of the original lift-type VAWT and improving the characteristics of the lift-drag combined VAWT. The static characteristic is one of the important starting characteristics of the wind turbine. The rapid development of computational fluid dynamics has laid a solid material foundation for VAWT. Thus the static characteristics of the LDCS with different numbers of blades were investigated by conducting numerical simulation and wind tunnel tests. The results demonstrated that the static torque coefficient of LDCS increased significantly with the increased incoming wind speed. The average value of the static torque coefficient also increased significantly. This study can provide guidelines for the research of lift-drag combined wind turbines.


2018 ◽  
Vol 21 (15) ◽  
pp. 2217-2226 ◽  
Author(s):  
YC Kim ◽  
Y Tamura ◽  
A Yoshida ◽  
T Ito ◽  
W Shan ◽  
...  

The general characteristics of aerodynamic vibrations of a solar wing system were investigated through wind tunnel tests using an aeroelastic model under four oncoming flows. In total, 12 solar panels were suspended by cables and orientated horizontally. Distances between panels were set constant. Tests showed that the fluctuating displacement increases proportionally to the square of the mean wind speed for all wind directions in boundary-layer flows. Larger fluctuating displacements were found for boundary-layer flows with larger power-law indices. Under low-turbulence flow, the fluctuating displacement increased proportionally to the square of the mean wind speed for wind directions between 0° and 30°, but an instability vibration was observed at high mean wind speed for wind directions larger than 40°. And when the wind direction was larger than 60°, a limited vibration was observed at low mean wind speed and the instability vibration was also observed at high mean wind speed. Fluctuating displacements under grid-generated flow showed a similar trend to that of the boundary-layer flows, although the values became much smaller.


Author(s):  
Valentina Hurtado ◽  
Santiago Arango ◽  
Luis Muñoz ◽  
Omar López

Abstract Wind speed has large influence on the results of road tests applied to bicycles. For this reason, this paper presents the design process of an onboard anemometer dedicated to bicycle testing. The design provides an affordable way to quantify both magnitude and direction of the wind velocity relative to the bicycle, allowing recording on arbitrary wind conditions that could arise during a test. The design methodology was structured with two major phases. The first was centered on the proof-of-concept for the use of a multi-hole pitot tube as main component for the onboard anemometer. The second was focused on the design of the structure, considering both packaging and structural integrity. The prototype of anemometer was tested in a wind tunnel to verify its performance, and it was also tested under severe vibrations to verify its structural integrity. The results showed that this concept can be used as a part of the bicycle instrumentation for road tests.


Radiocarbon ◽  
1980 ◽  
Vol 22 (3) ◽  
pp. 676-683 ◽  
Author(s):  
W S Broecker ◽  
T-H Peng ◽  
G Mathieu ◽  
R Hesslein ◽  
T Torgersen

Rates of CO2 exchange across the air-water interface in oceans and lakes measured to date by the L-DGO group are summarized. They range from 3 to 38 moles/m2/yr. The possible causes for this range include the differences in salinity, mean wind speed, and pH. Wind tunnel studies comparing fresh water and sea water are required before a satisfactory explanation can be found.


2016 ◽  
Vol 20 (10) ◽  
pp. 1599-1611 ◽  
Author(s):  
Peng Hu ◽  
Yongle Li ◽  
Yan Han ◽  
CS Cai ◽  
Guoji Xu

Characteristics of wind fields over the gorge or valley terrains are becoming more and more important to the structural wind engineering. However, the studies on this topic are very limited. To obtain the fundamental characteristics information about the wind fields over a typical gorge terrain, a V-shaped simplified gorge, which was abstracted from some real deep-cutting gorges where long-span bridges usually straddle, was introduced in the present wind tunnel studies. Then, the wind characteristics including the mean wind speed, turbulence intensity, integral length scale, and the wind power spectrum over the simplified gorge were studied in a simulated atmospheric boundary layer. Furthermore, the effects of the oncoming wind field type and oncoming wind direction on these wind characteristics were also investigated. The results show that compared with the oncoming wind, the wind speeds at the gorge center become larger, but the turbulence intensities and the longitudinal integral length scales become smaller. Generally, the wind fields over the gorge terrain can be approximately divided into two layers, that is, the gorge inner layer and the gorge outer layer. The different oncoming wind field types have remarkable effects on the mean wind speed ratios near the ground. When the angle between the oncoming wind and the axis of the gorge is in a certain small range, such as smaller than 10°, the wind fields are very close to those associated with the wind direction of 0°. However, when the angle is in a larger range, such as larger than 20°, the wind fields in the gorge will significantly change. The research conclusions can provide some references for civil engineering practices regarding the characteristics of wind fields over the real gorge terrains.


2015 ◽  
Vol 76 (5) ◽  
Author(s):  
Azli Abd Razak ◽  
Mohd Azhari Mohd Rodzi ◽  
Amirul Hakim Jumali ◽  
Sheikh Ahmad Zaki

Urban ventilation is important for the purpose of pollution dispersion, indoor ventilation for free running buildings and urban thermal comfort. In comparison to suburban cities, high-density cities have very low wind speeds at pedestrian level due to the densely built buildings blocking the wind and creating stagnant zones locally. Under this circumstance, field measurements were performed to investigate the performance of pedestrian wind at four major cities in Klang Valley. Mean wind speed was measured using anemometers at 1 minute data interval for 3 hours  and the  data collection for each case were obtained at pedestrian level. The mean wind speed ratio was plotted against the frontal area ratio and plan area ratio. The result indicates that: (1) the mean wind speed dramatically decreases with the increase of plan area ratio and (2) the mean wind speed exponentially decreases with the increase of frontal area ratio and qualitatively agrees with the power law relationship which is proposed by previous researcher. In addition, the frontal area ratio is considered as a better parameter to evaluate the performance of urban ventilation. 


2013 ◽  
Vol 291-294 ◽  
pp. 435-438
Author(s):  
Yuttachai Keawsuntia

A small multi-blade wind turbine is an alternative technology in order to electricity generating for use in a household because of the construction is cheap. From the study, the performance calculations by simulation program show that a number of blade at 12 blades is the optimum value for applying to this wind turbine that give maximum power coefficient of 0.29 at a tip speed ratio of 1.2. The results from the test run of wind rotor connected with generator in the wind tunnel at a wind velocity of 2 m/s, 3 m/s and 4 m/s, the system give the electric power of 2.5 W, 4.25 W and 4.49 W respectively.


2001 ◽  
Author(s):  
Kensaku Nomoto ◽  
Yutaka Masuyama ◽  
Akira Sakurai

"Naniwa-maru" is a reconstruction of a sailing trader that used to ply between Osaka and Edo, today's Tokyo, in the 18th to the mid-19th century. The rig was simple; single mast with a huge square sail. It was of totally wooden construction in a genuine Japanese manner. The present paper relates to her sailing sea-trial results compared with performance prediction based upon tank tests and wind tunnel studies. According to the trial the ship could reach as high as 70° to weather on her track and the speed then was some 30% of the true wind velocity in a fair sailing breeze. She was swiftest on a broad reach, achieving more than 40% of the wind speed. The said prediction proved to explain the test results fairly well.


2014 ◽  
Vol 501-504 ◽  
pp. 2297-2300
Author(s):  
Lun Hai Zhi

This paper presents statistical analysis results of wind speed and atmospheric turbulence data measured from a meteorological station in Beijing and is primarily intended to provide useful information on boundary layer wind characteristics for wind-resistant design of tall buildings and high-rise structures. Wind velocity data in longitudinal, lateral and vertical directions, which were recorded from an ultrasonic anemometer during windstorms, are analyzed and discussed. Atmospheric turbulence information such as turbulence intensity, gust factor, turbulence integral length scale and power spectral densities of the three-dimensional fluctuating wind velocity are presented and used to evaluate the adequacy of existing theoretical and empirical models. The objective of this study is to investigate the profiles of mean wind speed and atmospheric turbulence characteristics over a typical urban area.


Sign in / Sign up

Export Citation Format

Share Document