scholarly journals The Impact of Decarbonization Scenarios on Air Quality and Human Health in Poland—Analysis of Scenarios up to 2050

Atmosphere ◽  
2020 ◽  
Vol 11 (11) ◽  
pp. 1222
Author(s):  
Janusz Zyśk ◽  
Artur Wyrwa ◽  
Wojciech Suwała ◽  
Marcin Pluta ◽  
Tadeusz Olkuski ◽  
...  

Poland faces two great challenges in the field of environment and atmosphere protection: improving air quality, especially by reducing particulate matter (PM) emissions, and reducing relatively high greenhouse gas emissions. The aim of this research was to investigate how the fuel and technological transformations in the power, road transport, and household and tertiary sectors aimed at reducing carbon dioxide (CO2) emissions in Poland would affect air quality, human health, and the associated external costs. The study was conducted for 2050 while considering 2015 as the base year. Ambient PM2.5 (particles with a diameter of less than 2.5 µm) concentration was used as a proxy air quality indicator. The analysis was based on decarbonization scenarios developed within the REFLEX Project (Analysis of the European energy system under the aspects of flexibility and technological progress). The three scenarios of the REFLEX Project focused on the reduction of CO2 emissions up to 2050 from various sectors, mainly by the means of fuel and technological switches. This also led to the changes in the emission levels of pollutants that directly affect air quality, which were calculated with the use of fuel- and technology-specific emission factors. Next, for each emission scenario, ambient concentrations of PM2.5 and others pollutants were calculated with the use of the Polyphemus—an Eulerian-type air quality modelling system. Subsequently, the health impact of population exposed to air pollution and associated external costs were calculated using the πESA (Platform for Integrated Energy System Analysis) platform. The health impacts considered were the number of years of life lost, restricted activity days, and number of chronic bronchitis cases. The results showed that the largest reductions in both greenhouse gas and PM emissions—and consequently improvements of air quality resulting in a decrease of negative impacts on human health and a decrease of external costs—can be achieved by the transformation of heat production in the household and tertiary sector. The results also showed that the decrease in PM2.5 emissions envisaged in the analyzed scenarios in 2050 will lead to a reduction in the number of lost years of life by about 35 thousand and an avoidance of external costs by EUR 2.4 billion.

2018 ◽  
Vol 14 (2) ◽  
pp. 23-27 ◽  
Author(s):  
Milan Škorupa ◽  
Tomáš Čechovič ◽  
Martin Kendra ◽  
Borut Jereb

Abstract Transport is one of the human activities that increases the amount of greenhouse gases in the air. CO2 is the main cause of global warming and contribute for around 80 % of all greenhouse gas emissions. The paper presents CO2 production based on the amount of sold fuel in Slovakia and Slovenia. Based on the obtained data, the calculations about the production of CO2 according to the type of fuel was made. The conducted research has focused on the issue of traffic congestion and to reduce CO2 emissions by 15 % in total by 2030, as Slovakia and Slovenia concluded an agreement with other EU members in 2009. External costs calculation was made with average price of 1 tonne emission credit in 2016 and with presumed average price in 2019. The case study takes into account the consumption of the gasoline and diesel in transport throughout all Slovakia and in Slovenia.


Agronomy ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1477
Author(s):  
Antonio Marín-Martínez ◽  
Alberto Sanz-Cobeña ◽  
Mª Angeles Bustamante ◽  
Enrique Agulló ◽  
Concepción Paredes

In semi-arid vineyard agroecosystems, highly vulnerable in the context of climate change, the soil organic matter (OM) content is crucial to the improvement of soil fertility and grape productivity. The impact of OM, from compost and animal manure, on soil properties (e.g., pH, oxidisable organic C, organic N, NH4+-N and NO3−-N), grape yield and direct greenhouse gas (GHG) emission in vineyards was assessed. For this purpose, two wine grape varieties were chosen and managed differently: with a rain-fed non-trellising vineyard of Monastrell, a drip-irrigated trellising vineyard of Monastrell and a drip-irrigated trellising vineyard of Cabernet Sauvignon. The studied fertiliser treatments were without organic amendments (C), sheep/goat manure (SGM) and distillery organic waste compost (DC). The SGM and DC treatments were applied at a rate of 4600 kg ha−1 (fresh weight, FW) and 5000 kg ha−1 FW, respectively. The use of organic amendments improved soil fertility and grape yield, especially in the drip-irrigated trellising vineyards. Increased CO2 emissions were coincident with higher grape yields and manure application (maximum CO2 emissions = 1518 mg C-CO2 m−2 d−1). In contrast, N2O emissions, mainly produced through nitrification, were decreased in the plots showing higher grape production (minimum N2O emissions = −0.090 mg N2O-N m−2 d−1). In all plots, the CH4 fluxes were negative during most of the experiment (−1.073−0.403 mg CH4-C m−2 d−1), indicating that these ecosystems can represent a significant sink for atmospheric CH4. According to our results, the optimal vineyard management, considering soil properties, yield and GHG mitigation together, was the use of compost in a drip-irrigated trellising vineyard with the grape variety Monastrell.


Atmosphere ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 563
Author(s):  
Kelsey Anderson ◽  
Philip A. Moore ◽  
Jerry Martin ◽  
Amanda J. Ashworth

Gaseous emissions from poultry litter causes production problems for producers as well as the environment, by contributing to climate change and reducing air quality. Novel methods of reducing ammonia (NH3) and greenhouse gas (GHG) emissions in poultry facilities are needed. As such, our research evaluated GHG emissions over a 42 d period. Three separate flocks of 1000 broilers were used for this study. The first flock was used only to produce litter needed for the experiment. The second and third flocks were allocated to 20 pens in a randomized block design with four replicated of five treatments. The management practices studied included an unamended control; a conventional practice of incorporating aluminum sulfate (referred to as alum) at 98 kg/100 m2); a novel litter amendment made from alum mud, bauxite, and sulfuric acid (alum mud litter amendment, AMLA) applied at different rates (49 and 98 kg/100 m2) and methods (surface applied or incorporated). Nitrous oxide emissions were low for all treatments in flocks 2 and 3 (0.40 and 0.37 mg m2 hr−1, respectively). The formation of caked litter (due to excessive moisture) during day 35 and 42 caused high variability in CH4 and CO2 emissions. Alum mud litter amendment and alum did not significantly affect GHGs emissions from litter, regardless of the amendment rate or application method. In fact, litter amendments such as alum and AMLA typically lower GHG emissions from poultry facilities by reducing ventilation requirements to maintain air quality in cooler months due to lower NH3 levels, resulting in less propane use and concomitant reductions in CO2 emissions.


2017 ◽  
Vol 200 ◽  
pp. 693-703 ◽  
Author(s):  
Jos Lelieveld

In atmospheric chemistry, interactions between air pollution, the biosphere and human health, often through reaction mixtures from both natural and anthropogenic sources, are of growing interest. Massive pollution emissions in the Anthropocene have transformed atmospheric composition to the extent that biogeochemical cycles, air quality and climate have changed globally and partly profoundly. It is estimated that mortality attributable to outdoor air pollution amounts to 4.33 million individuals per year, associated with 123 million years of life lost. Worldwide, air pollution is the major environmental risk factor to human health, and strict air quality standards have the potential to strongly reduce morbidity and mortality. Preserving clean air should be considered a human right, and is fundamental to many sustainable development goals of the United Nations, such as good health, climate action, sustainable cities, clean energy, and protecting life on land and in the water. It would be appropriate to adopt “clean air” as a sustainable development goal.


2018 ◽  
Vol 39 (2) ◽  
pp. 196-210 ◽  
Author(s):  
Barny Evans ◽  
Sabbir Sidat

This paper is an investigation into the issues around how we calculate CO2 emissions in the built environment. At present, in Building Regulations and GHG Protocol calculations used for buildings and corporate CO2 emissions calculations, it is standard to use a single number for the CO2 emission factor of each source. This paper considers how energy demand, particularly electricity at different times of the day, season and even year can differ in terms of its CO2 emissions. This paper models three different building types (retail, office and home) using standard software to estimate a profile of energy demand. It then considers how CO2 emissions calculations differ between using the single standard emissions factor and using an hourly emissions factor based on real electrical grid generation over a year. The paper also examines the impact of considering lifetime emissions factors rather than one-year factors using UK government projections. The results show that there is a significant difference to the analysis of benefit in terms of CO2 emissions from different measures – both intra- and inter-year – due to the varying CO2 emissions intensity, even when they deliver the same amount of net energy saving. Other factors not considered in this paper, such as impact on peak generation and air quality, are likely to be important when considering whole-system impacts. In line with this, it is recommended that moves are made to incorporate intra- and inter-year emissions factor changes in methodologies for calculating CO2 emissions. (This is particularly important as demand side response and energy storage, although generally accepted as important in the decarbonisation of the energy system at present will show as an increase in CO2 emissions when using a single number.) Further work quantifying the impact on air quality and peak generation capacity should also be considered. Practical application: This paper aims to help practitioners to understand the performance gap between how systems need to be designed in order to meet regulations compared to how buildings perform in reality – both today and in the future. In particular, it considers the use of ‘real-time’ carbon factors in order to attain long-term CO2 reductions. This methodology enables decision makers to understand the impacts of different energy reduction technologies, considering each of their unique characteristics and usage profiles. If implemented, the result is a simple-to-use dataset which can be embedded into the software packages already available onto the market which mirrors the complexity of the electricity grid that is under-represented through the use of a static carbon figure.


2018 ◽  
Vol 6 (1) ◽  
pp. 26-29
Author(s):  
Radovan Slávik ◽  
◽  
Dominika Beňová ◽  
Jozef Gnap ◽  
Ondrej Stopka

The paper focuses on the impact of city logistics on air quality. The first chapter focuses on the EU's transport policy for 2030-2050 to reduce greenhouse gas emissions. The second chapter focuses on air quality in the Slovak Republic and the amount of greenhouse gases in the air. The aim of the contribution is to highlight the impact of road transport on air quality and air pollution as well as the need to reduce these harmful emissions.


2020 ◽  
Vol 7 (2) ◽  
pp. 84-94
Author(s):  
Mirela Poljanac

Wood burning in residential appliances is very represented in the Republic of Croatia. It is a main or an additional form of heating for many households in rural and urban areas and is therefore an important source of air pollution. The choice of energy and the combustion appliance used in home have a significant impact on PM2.5 emissions. The paper informs the reader about PM2.5 emissions, their main sources and impacts on human health, environment, climate, air quality, and the reason why PM2.5 emissions from residential wood burning are harmful. Paper also gives an overview of spatial PM2.5 emission distribution in Croatia, their five air quality zones and four agglomerations. The paper analyses the sources and their contribution to PM2.5 emissions with the relevance of PM2.5 emissions from residential plants, the use of fuels in residential plants and their contribution to PM2.5 emissions and PM2.5 emissions by fuel combustion technologies in residential sector. Appropriate strategies, policies, and actions to reduce the impact of residential biomass (wood) burning on the environment, air quality and human health are considered.


2016 ◽  
Vol 11 (2) ◽  
pp. 024010 ◽  
Author(s):  
S T Turnock ◽  
E W Butt ◽  
T B Richardson ◽  
G W Mann ◽  
C L Reddington ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document