scholarly journals Classification of the Circulation Patterns Related to Strong Dust Weather in China Using a Combination of the Lamb–Jenkinson and k-Means Clustering Methods

Atmosphere ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1545
Author(s):  
Ziwei Yi ◽  
Yaqiang Wang ◽  
Wencong Chen ◽  
Bin Guo ◽  
Bihui Zhang ◽  
...  

Sand and dust storms (SDSs) cause major disasters in northern China. They have serious impacts on human health, daily life, and industrial and agricultural production, in addition to threatening the regional ecological environment and social economy. Based on meteorological observational data and the European Centre for Medium-Range Weather Forecasts (ECMWF) ERA5 dataset for spring 2000–2021, we used the Lamb–Jenkinson circulation classification method to classify the three major areas influencing SDSs in northern China. We also used the k-means clustering method to classify the overall circulation pattern in northern China. Our results show that the circulation types favoring SDSs in the southern basin of Xinjiang are southwesterly winds (SW), cyclones (C), and anticyclones (A). The circulation types favoring SDSs in western Inner Mongolia and southern Mongolia are northwesterly winds (NW), northerly winds (N), cyclones (C), and anticyclones (A). The circulation types favoring SDSs in central Inner Mongolia are northwesterly winds (NW), northerly winds (N), southwesterly winds (SW), and anticyclones (A). The 500 hPa and surface circulation patterns in China can be divided into nine types. Among them, five dominant circulation patterns favor strong SDSs: a cold high-pressure region and cold front (T1), a Mongolian cyclone (T2), a mixed type of Mongolian cyclone and cold front (T3), a thermal depression and cold front (T5), and a cold front (T8). During 2000–2004, the T8 circulation pattern occurred most frequently as the main influencing circulation. From 2005 to 2010, the T3 and T8 circulation patterns dominated. Circulation patterns T1 and T3 dominated during 2011–2015 and 2016–2020, respectively. We analyzed the main circulation patterns for four SDS events occurring in 2021 by combining the Lamb–Jenkinson and k-means methods. The SDS events in 2021 were closest to the T3 circulation pattern and were mainly influenced by Mongolian cyclones and surface cold fronts. The main propagation paths were westerly and northwesterly.

Author(s):  
Rui Mao ◽  
Dao-Yi Gong ◽  
Seong-Joong Kim ◽  
Qi Zong ◽  
Xingya Feng ◽  
...  

Abstract Dust storms over the Taklimakan Desert (TD), Northwest China, not only influence human health but also affect regional climate through direct effects of dust aerosols on solar and longwave radiation. The Coupled Model Intercomparisons Project Phase 5 (CMIP5) models project a decrease in dust storms because of a decrease in dust emissions over the TD in the future under warming scenarios. However, inaccurate simulations of dust emissions cause the CMIP5 models to simulate dust storms poorly. Here we analyzed typical circulation patterns that initiate dust storms over the TD and examined changes in the frequency of typical circulation patterns derived from the CMIP6 models in an extreme warming scenario. The results show that there will be an increase in typical circulation pattern frequency in the latter half of the 21st century compared with 1958-2014, implying an increase in dust storms over the TD in the future under the extreme warming scenario. The increase in dust storms over the TD may be related to an increase in synoptic activities in the future from the Middle Asia to the TD, which is caused by a southern movement of subtropical westerly jet stream under the extreme warming scenario.


Processes ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 900
Author(s):  
Chao Wang ◽  
Hongyan Han ◽  
Lin Sun ◽  
Na Na ◽  
Haiwen Xu ◽  
...  

Whole-plant corn silage is a predominant forage for livestock that is processed in Heilongjiang province (Daqing city and Longjiang county), Inner Mongolia Autonomous Region (Helin county and Tumet Left Banner) and Shanxi province (Taigu and Shanyin counties) of North China; it was sampled at 0, 5, 14, 45 and 90 days after ensiling. Bacterial community and fermentation quality were analysed. During fermentation, the pH was reduced to below 4.0, lactic acid increased to above 73 g/kg DM (p < 0.05) and Lactobacillus dominated the bacterial community and had a reducing abundance after 14 days. In the final silages, butyric acid was not detected, and the contents of acetic acid and ammonia nitrogen were below 35 g/kg DM and 100 g/kg total nitrogen, respectively. Compared with silages from Heilongjiang and Inner Mongolia, silages from Shanxi contained less Lactobacillus and more Leuconostoc (p < 0.05), and had a separating bacterial community from 14 to 90 days. Lactobacillus was negatively correlated with pH in all the silages (p < 0.05), and positively correlated with lactic and acetic acid in silages from Heilongjiang and Inner Mongolia (p < 0.05). The results show that the final silages had satisfactory fermentation quality. During the ensilage process, silages from Heilongjiang and Inner Mongolia had similar bacterial-succession patterns; the activity of Lactobacillus formed and maintained good fermentation quality in whole-plant corn silage.


Atmosphere ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 140
Author(s):  
Wenping Jiang ◽  
Gen Li ◽  
Gongjie Wang

El Niño events vary from case to case with different decaying paces. In this study, we demonstrate that the different El Niño decaying paces have distinct impacts on the East Asian monsoon circulation pattern during post-El Niño summers. For fast decaying (FD) El Niño summers, a large-scale anomalous anticyclone dominates over East Asia and the North Pacific from subtropical to mid-latitude; whereas, the East Asian monsoon circulation display a dipole pattern with anomalous northern cyclone and southern anticyclone for slow decaying (SD) El Niño summers. The difference in anomalous East Asian monsoon circulation patterns was closely associated with the sea surface temperature (SST) anomaly patterns in the tropics. In FD El Niño summers, the cold SST anomalies in the tropical central-eastern Pacific and warm SST anomalies in the Maritime Continent induce the anticyclone anomalies over the Northwest Pacific. In contrast, the warm Kelvin wave anchored over the tropical Indian Ocean during SD El Niño summers plays a crucial role in sustaining the anticyclone anomalies over the Northwest Pacific. In particular, the opposite atmospheric circulation anomaly patterns over Northeast Asia and the mid-latitude North Pacific are mainly modulated by the stationary Rossby wave trains triggered by the opposite SST anomalies in the tropical eastern Pacific during FD and SD El Niño summers. Finally, the effect of distinct summer monsoon circulation patterns associated with the El Niño decay pace on the summer climate over East Asia are also discussed.


2021 ◽  
pp. 1-39
Author(s):  
Cassandra D.W. Rogers ◽  
Kai Kornhuber ◽  
Sarah E. Perkins-Kirkpatrick ◽  
Paul C. Loikith ◽  
Deepti Singh

AbstractSimultaneous heatwaves affecting multiple regions (referred to as concurrent heatwaves), pose compounding threats to various natural and societal systems, including global food chains, emergency response systems, and reinsurance industries. While anthropogenic climate change is increasing heatwave risks across most regions, the interactions between warming and circulation changes that yield concurrent heatwaves remain understudied. Here, we quantify historical (1979-2019) trends in concurrent heatwaves during the warm-season (May-September, MJJAS) across the Northern Hemisphere mid- to high-latitudes. We find a significant increase of ~46% in the mean spatial extent of concurrent heatwaves, ~17% increase in their maximum intensity, and ~6-fold increase in their frequency. Using Self-Organising Maps, we identify large-scale circulation patterns (300 hPa) associated with specific concurrent heatwave configurations across Northern Hemisphere regions. We show that observed changes in the frequency of specific circulation patterns preferentially increase the risk of concurrent heatwaves across particular regions. Patterns linking concurrent heatwaves across eastern North America, eastern and northern Europe, parts of Asia, and the Barents and Kara Seas, show the largest increases in frequency (~5.9 additional days per decade). We also quantify the relative contributions of circulation pattern changes and warming to overall observed concurrent heatwave day frequency trends. While warming has a predominant and positive influence on increasing concurrent heatwaves, circulation pattern changes have a varying influence and account for up to 0.8 additional concurrent heatwave days per decade. Identifying regions with an elevated risk of concurrent heatwaves and understanding their drivers is indispensable for evaluating projected climate risks on interconnected societal systems and fostering regional preparedness in a changing climate.


2021 ◽  
Vol 21 (1) ◽  
pp. 144-150
Author(s):  
Zhouyong Sun ◽  
Jing Shao ◽  
Nan Di

Abstract By synthesizing previous studies and the most updated archaeological data by typical stratigraphic contexts and assemblages, Hetao region cultural remains represented by li-tripods with double-handles should be considered part of the Shimao culture. With its core distribution area spanning from northern Shaanxi to central-northern Shanxi to central-southern Inner Mongolia, the development of Shimao culture can be divided into three phases: early, middle, and late. The absolute dating of the Shimao culture ranges from approximately 2300 BCE to 1800 BCE. The Shimao culture was therefore a major late Longshan archaeological culture in northern China that stands apart from its peers in the Central Plains.


2022 ◽  
pp. 1-41

Abstract The interannual variation of springtime extreme precipitation (SEP) days in North China (NC) and their reliance on atmospheric circulation patterns are studied by using the continuous daily record of 396 rain gauges and the fifth generation of the European Centre for Medium-Range Weather Forecasts atmospheric reanalysis during 1979–2019. The SEP days are defined as the days when at least 10% of rain gauges in NC record daily precipitation no less than 10.5 mm. Results show that the number of SEP days shows large interannual variability but no significant trend in the study period. Using the objective classification method of the obliquely rotated principal analysis in T-mode, we classify the atmospheric circulation into five different patterns based on the geopotential height at 700 hPa. Three circulation patterns all have fronts and are associated with strong southerly wind, leading to 88% of SEP days in NC. The strong southerly wind may provide moisture and dynamic forcing for the frontal precipitation. The interannual variation of SEP days is related with the number of the three above-mentioned dominant circulation patterns. Further analysis shows that the West Pacific pattern could be one of the possible climate variability modes related to SEP days. This study reveals that the daily circulation pattern may be the linkage between SEP days and climate variability modes in NC.


2008 ◽  
Vol 14 ◽  
pp. 243-249 ◽  
Author(s):  
J. Kyselý ◽  
R. Huth

Abstract. Heat waves are among natural hazards with the most severe consequences for human society, including pronounced mortality impacts in mid-latitudes. Recent studies have hypothesized that the enhanced persistence of atmospheric circulation may affect surface climatic extremes, mainly the frequency and severity of heat waves. In this paper we examine relationships between the persistence of the Hess-Brezowsky circulation types conducive to summer heat waves and air temperature anomalies at stations over most of the European continent. We also evaluate differences between temperature anomalies during late and early stages of warm circulation types in all seasons. Results show that more persistent circulation patterns tend to enhance the severity of heat waves and support more pronounced temperature anomalies. Recent sharply rising trends in positive temperature extremes over Europe may be related to the greater persistence of the circulation types, and if similar changes towards enhanced persistence affect other mid-latitudinal regions, analogous consequences and implications for temperature extremes may be expected.


Sign in / Sign up

Export Citation Format

Share Document