scholarly journals Microstructure, Wettability, Corrosion Resistance and Antibacterial Property of Cu-MTa2O5 Multilayer Composite Coatings with Different Cu Incorporation Contents

Biomolecules ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 68 ◽  
Author(s):  
Zeliang Ding ◽  
Yi Wang ◽  
Quan Zhou ◽  
Ziyu Ding ◽  
Jun Liu ◽  
...  

Bacterial infection and toxic metal ions releasing are the challenges in the clinical application of Ti6Al4V alloy implant materials. Copper is a kind of long-acting, broad-spectrum and safe antibacterial element, and Ta2O5 has good corrosion resistance, wear-resistance and biocompatibility, they are considered and chosen as a potential coating candidate for implant surface modification. In this paper, magnetron sputtering technology was used to prepare copper doped Ta2O5 multilayer composite coating Cu-Ta2O5/Ta2O5/Ta2O5-TiO2/TiO2/Ti (Cu-MTa2O5 for short) on Ti6Al4V alloy surface, for studying the effect of copper incorporation on the microstructure, wettability, anticorrosion and antibacterial activities of the composite coating. The results showed that Cu-MTa2O5 coating obviously improves the hydrophobicity, corrosion resistance and antibacterial property of Ti6Al4V alloy. In the coating, both copper and Ta2O5 exhibit an amorphous structure and copper mainly presents as an oxidation state (Cu2O and CuO). With the increase of the doping amount of copper, the grain size, roughness, and hydrophobicity of the modified surface of Ti6Al4V alloy are increased. Electrochemical experiment results demonstrated that the corrosion resistance of Cu-MTa2O5 coated Ti6Al4V alloy slightly decreased with the increase of copper concentration, but this coating still acts strong anticorrosion protection for Ti6Al4V alloy. Moreover, the Cu-MTa2O5 coating can kill more than 97% of Staphylococcus aureus in 24 h, and the antibacterial rate increases with the increase of copper content. Therefore, Cu-MTa2O5 composite coating is a good candidate for improving anticorrosion and antibacterial properties of Ti6Al4V alloy implant medical devices.

Nanomaterials ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 685 ◽  
Author(s):  
Ziyu Ding ◽  
Quanguo He ◽  
Zeliang Ding ◽  
Cuijiao Liao ◽  
Dongchu Chen ◽  
...  

Ti6Al4V titanium alloy has been widely used as medical implant material in orthopedic surgery, and one of the obstacles preventing it from wide use is toxic metal ions release and bacterial implant infection. In this paper, in order to improve corrosion resistance and antibacterial performance of Ti6Al4V titanium alloy, ZnO doped tantalum oxide (TaxOy) multilayer composite coating ZnO-TaxOy/TaxOy/TaxOy-TiO2/TiO2/Ti (ZnO-TaxOy) was deposited by magnetron sputtering at room temperature. As a comparison, monolayer TaxOy coating was prepared on the surface of Ti6Al4V alloy. The morphology and phase composition of the coatings were investigated by field emission scanning electron microscopy (FE-SEM) and X-ray diffraction (XRD), the elemental chemical states of coating surfaces were investigated by X-ray photoelectron spectroscope (XPS). The adhesion strength and corrosion resistance of the coatings were examined by micro-scratch tester and electrochemical workstations, respectively. The results show that the adhesion strength of multilayer ZnO-TaxOy coating is 16.37 times higher than that of single-layer TaxOy coating. The ZnO-TaxOy composite coating has higher corrosion potential and lower corrosion current density than that of TaxOy coating, showing better corrosion inhibition. Furthermore, antibacterial test revealed that multilayer ZnO-TaxOy coating has a much better antibacterial performance by contrast.


2011 ◽  
Vol 674 ◽  
pp. 71-80 ◽  
Author(s):  
Jerzy Smolik ◽  
Adam Mazurkiewicz

The new hybrid technology is a combination of electron beam evaporation and arcevaporation processes, enabling the creation of the anti-erosion multilayer composite coating Ni/Cr- Cr3C2 with different volume of Cr3C2 filling in soft Ni/Cr matrix. The soft matrix made of Ni/Cr alloy and hard filling of Cr3C2 are created at the same time and directly during the electron beam and arc-evaporation process. Changes of the parameters of the hybrid process, i.e. pressure, current of arc discharge and substrate bias voltage Ubias, make it possible to control the volume of Cr3C2 and are a factor in filling the soft Cr/Ni matrix with carbides Cr3C2. With the use of the developed surface treatment hybrid technology, the multilayer composite coating Ni/Cr-Cr3C2 were obtained. For all composite layers created, the material properties, such as morphology, phase and chemical compositions, hardness, and Young modulus were investigated. The paper presents the original technological equipment, methodology, and technological parameters for the creation of the composite coating Ni/Cr-Cr3C2.


Author(s):  
Chandrasekhara Sastry Chebiyyam ◽  
Pradeep N ◽  
Shaik AM ◽  
Hafeezur Rahman A ◽  
Sandeep Patil

Abstract Nano composite coatings on HSLA ASTM A860 alloy, adds to the barrier efficacy by increase in the microhardness, wear and corrosion resistance of the substrate material. Additionally, reduction of delamination of the nano composite coating sample is ascertained. Ball milling is availed to curtail the coating samples (Al2O3/ZrO2) to nano size, for forming a electrodeposited product on the substrate layer. The curtailment in grain size was ascertained to be 17.62% in Ni-Al2O3/ZrO2 nano composite coating. During the deposition process, due to the presence of Al2O3/ZrO2 nano particles an increase in cathode efficiency is ascertained. An XRD analysis of the nano composite coating indicates a curtailment in grain size along with increase in the nucleation sites causing a surge in the growth of nano coating layer. In correlation to uncoated HSLA ASTM A36 alloy sample, a surge in compressive residual stress by 47.14%, reduction of waviness by 32.14% (AFM analysis), upsurge in microhardness by 67.77% is ascertained in Ni-Al2O3/ZrO2 nano composite coating. Furthermore, in nano coated Ni-Al2O3/ZrO2 composite a reduction is observed pertaining to weight loss and friction coefficients by 27.44% and 13% in correlation to plain uncoated alloy respectively. A morphology analysis after nano coating indicates, Ni-Al2O3/ZrO2 particles occupy the areas of micro holes, reducing the wide gaps and crevice points inside the matrix of the substrate, enacting as a physical barrier to upsurge the corrosion resistance by 67.72% in correlation to HSLA ASTM A860 base alloy.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Baoe Li ◽  
Xiaomei Xia ◽  
Miaoqi Guo ◽  
Yu Jiang ◽  
Yu Li ◽  
...  

Abstract Titanium (Ti) is the widely used implant material in clinic, however, failures still frequently occur due to its bioinertness and poor antibacterial property. To improve the biological and antibacterial properties of Ti implants, micro-nanostructured hydroxyapatite (HA) coating was prepared on Ti surface by micro-arc oxidation (MAO), and then the antibacterial agent of chitosan (CS) was loaded on the HA surface through dip-coating method. The results showed that the obtained HA/CS composite coating accelerated the formation of apatite layer in SBF solution, enhanced cell adhesion, spreading and proliferation, and it also inhibited the bacterial growth, showing improved biological and antibacterial properties. Although, with the increased CS amount, the coverage of HA coating would be enlarged, resulting in depressed biological property, however, the antibacterial property of the composite coating was enhanced, and the cytotoxicity about CS was not detected in this work. In conclusion, the HA/CS coating has promising application in orthopedics, dentistry and other biomedical devices.


RSC Advances ◽  
2018 ◽  
Vol 8 (22) ◽  
pp. 12138-12145 ◽  
Author(s):  
Zong-wei Jia ◽  
Wan-chang Sun ◽  
Fang Guo ◽  
Ya-ru Dong ◽  
Xiao-jia Liu

Ni–Co–Al2O3 composite coatings were prepared by pulsed electrodeposition and electrophoresis–electrodeposition on aluminum alloy.


2017 ◽  
Vol 62 (4) ◽  
pp. 2421-2424 ◽  
Author(s):  
N. Gidikova ◽  
M. Sulowski ◽  
V. Petkov ◽  
R. Valov ◽  
G. Cempura

AbstractChrome plating is used to improve the properties of metal surfaces like hardness, corrosion resistance and wear resistance in machine building. To further improve these properties, an electrodeposited chromium coating on steel, modified with nanodiamond particles is proposed. The nanodiamond particles (average size 4 nm measured by TEM) are produced by detonation synthesis (NDDS). The composite coating (Cr+NDDS) has an increased thickness, about two times greater microhardness and finer micro-structure compared to that of unmodified chromium coating obtained under the same galvanization conditions. In the microstructure of specimen obtained from chrome electrolyte with concentration of NDDS 25 g/l or more, “minisections” with chromium shell were found. They were identified by metallographic microscope and X-ray analyser on etched section of chromium plated sample. The object of further research is the dependence of the presence of NDDS in the composite coating from the nanodiamond particles concentration in the chroming electrolyte.


2008 ◽  
Vol 373-374 ◽  
pp. 212-215 ◽  
Author(s):  
Yun Ying Fan ◽  
Ying Jie Zhang ◽  
Peng Dong

Electrodeposited Zn and Zn-Fe alloy have been applied widely to protect steel from corrosion, but the property of coating still needs to be improved. In this paper, Zn-Fe-SiO2 composite coatings are electrodeposited from Zn-Fe alloy electrolyte containing SiO2 particles. Zinc based coatings with Fe% >1%(mass) are deposited from sulfate bath, and coatings with Fe% <1%(mass) are deposited from chloride bath. Particle content in the composite coating generally increases with particle concentration under an adequate agitation and then tends to saturation. The optimum particle content in the composite coating is 0.5%(mass). Corrosion resistance, porosity, hydrogen embrittlement and surface morphology of Zn-Fe-SiO2 composite coatings have been tested and compared with electrodeposited Zn and Zn-Fe alloy. The data implies that Zn-Fe-SiO2 composite coating has the best corrosion resistance, lowest porosity, lowest hydrogen content and the finest crystal. All the results show that Zn-Fe-SiO2 composite coating is satisfactory to be used as anti-corrosion material for steel and has a great future in application.


Materials ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 924 ◽  
Author(s):  
Juliusz Winiarski ◽  
Anna Niciejewska ◽  
Jacek Ryl ◽  
Kazimierz Darowicki ◽  
Sylwia Baśladyńska ◽  
...  

Cerium molybdenum oxide hydrate microflakes are codeposited with nickel from a deep eutectic solvent-based bath. During seven days of exposure in 0.05 M NaCl solution, the corrosion resistance of composite coating (Ni/CeMoOxide) is slightly reduced, due to the existence of some microcracks caused by large microflakes. Multielemental analysis of the solution, in which coatings are exposed and the qualitative changes in the surface chemistry (XPS) show selective etching molybdenum from microflakes. The amount of various molybdenum species within the surface of coating nearly completely disappear, due to the corrosion process. Significant amounts of Ce3+ compounds are removed, however the corrosion process is less selective towards the cerium, and the overall cerium chemistry remains unchanged. Initially, blank Ni coatings are covered by NiO and Ni(OH)2 in an atomic ratio of 1:2. After exposure, the amount of Ni(OH)2 increases in relation to NiO (ratio 1:3). For the composite coating, the atomic ratios of both forms of nickel vary from 1:0.8 to 1:1.3. Despite achieving lower corrosion resistance of the composite coating, the applied concept of using micro-flakes, whose skeleton is a system of Ce(III) species and active form are molybdate ions, may be interesting for applications in materials with potential self-healing properties.


RSC Advances ◽  
2016 ◽  
Vol 6 (93) ◽  
pp. 90587-90596 ◽  
Author(s):  
Zhijun Li ◽  
Yi Yuan

We report a superhydrophobic organophosphonate composite coating on a magnesium–lithium alloy surface, which exhibits excellent water-repellent and corrosion resistance properties.


2019 ◽  
Vol 66 (4) ◽  
pp. 471-478 ◽  
Author(s):  
Majid Hosseinzadeh ◽  
Abdol Hamid Jafari ◽  
Rouhollah Mousavi ◽  
Mojtaba Esmailzadeh

Purpose In this study, electrochemical deposition method which have cheaper equipment than thermal spraying methods and is available for the production of composite coatings were used. Design/methodology/approach Composite coatings were electrodeposited from a Watts's bath solution in which the suspended Cr3C2-NiCr particles were dispersed in the bath solution during deposition. Potentiodynamic polarization and electrochemical impedance spectroscopy techniques have been used to evaluate the corrosion resistance of the composite coating in the 3.5 Wt.% NaCl solution. Findings It was found that the submicron Cr3C2-NiCr particles distributed uniformly in the coating and depend on the current density of deposition, different amount of particles can be incorporated in the coating. The results showed that the corrosion resistance of the Ni/ Cr3C2-NiCr composite coatings is more comparable to the pure nickel coating. Originality/value Production of Ni-base composite coating from an electrolytic bath containing Cr3C2-NiCr particles is possible via electrodeposition.


Sign in / Sign up

Export Citation Format

Share Document