scholarly journals Enhancing Activity of Pleurotus sajor-caju (Fr.) Sing β-1,3-Glucanoligosaccharide (Ps-GOS) on Proliferation, Differentiation, and Mineralization of MC3T3-E1 Cells through the Involvement of BMP-2/Runx2/MAPK/Wnt/β-Catenin Signaling Pathway

Biomolecules ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 190
Author(s):  
Thanintorn Yodthong ◽  
Ureporn Kedjarune-Leggat ◽  
Carl Smythe ◽  
Pannawich Sukprasirt ◽  
Aratee Aroonkesorn ◽  
...  

Osteoporosis is a leading world health problem that results from an imbalance between bone formation and bone resorption. β-glucans has been extensively reported to exhibit a wide range of biological activities, including antiosteoporosis both in vitro and in vivo. However, the molecular mechanisms responsible for β-glucan-mediated bone formation in osteoblasts have not yet been investigated. The oyster mushroom Pleurotus sajor-caju produces abundant amounts of an insoluble β-glucan, which is rendered soluble by enzymatic degradation using Hevea glucanase to generate low-molecular-weight glucanoligosaccharide (Ps-GOS). This study aimed to investigate the osteogenic enhancing activity and underlining molecular mechanism of Ps-GOS on osteoblastogenesis of pre-osteoblastic MC3T3-E1 cells. In this study, it was demonstrated for the first time that low concentrations of Ps-GOS could promote cell proliferation and division after 48 h of treatment. In addition, Ps-GOS upregulated the mRNA and protein expression level of bone morphogenetic protein-2 (BMP-2) and runt-related transcription factor-2 (Runx2), which are both involved in BMP signaling pathway, accompanied by increased alkaline phosphatase (ALP) activity and mineralization. Ps-GOS also upregulated the expression of osteogenesis related genes including ALP, collagen type 1 (COL1), and osteocalcin (OCN). Moreover, our novel findings suggest that Ps-GOS may exert its effects through the mitogen-activated protein kinase (MAPK) and wingless-type MMTV integration site (Wnt)/β-catenin signaling pathways.

Molecules ◽  
2018 ◽  
Vol 23 (12) ◽  
pp. 3086 ◽  
Author(s):  
Thanintorn Yodthong ◽  
Ureporn Kedjarune-Leggat ◽  
Carl Smythe ◽  
Rapepun Wititsuwannakul ◽  
Thanawat Pitakpornpreecha

Osteoporosis is widely recognized as a major health problem caused by an inappropriate rate of bone resorption compared to bone formation. Previously we showed that d-pinitol inhibits osteoclastogenesis but has no effect on osteoblastogenesis. However, the effect on osteoblast differentiation of its isomer, l-quebrachitol, has not yet been reported. The purpose of this study was, therefore, to investigate whether l-quebrachitol promotes the osteoblastogenesis of pre-osteoblastic MC3T3-E1 cells. Moreover, the molecular mechanism of action of l-quebrachitol was further explored. Here, it is shown for the first time that l-quebrachitol significantly promotes proliferation and cell DNA synthesis. It also enhances mineralization accompanied by increases in mRNA expression of bone matrix proteins including alkaline phosphatase (ALP), collagen type I (ColI), osteocalcin (OCN), and osteopontin (OPN). In addition, l-quebrachitol upregulates the mRNA and protein expression of bone morphogenetic protein-2 (BMP-2) and runt-related transcription factor-2 (Runx2), while down-regulating the receptor activator of the nuclear factor-κB ligand (RANKL) mRNA level. Moreover, the expression of regulatory genes associated with the mitogen-activated protein kinase (MAPK) and wingless-type MMTV integration site (Wnt)/β-catenin signaling pathways are also upregulated. These findings indicate that l-quebrachitol may promote osteoblastogenesis by triggering the BMP-2-response as well as the Runx2, MAPK, and Wnt/β-catenin signaling pathway.


Antioxidants ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 571 ◽  
Author(s):  
Eugenie Mussard ◽  
Annabelle Cesaro ◽  
Eric Lespessailles ◽  
Brigitte Legrain ◽  
Sabine Berteina-Raboin ◽  
...  

Traditionally, Andrographis paniculata has been used as an herbal remedy for lung infection treatments. Its leaves contain a diterpenoid labdane called andrographolide responsible for a wide range of biological activities such as antioxidant, anti-inflammatory, and anti-cancer properties. This manuscript is a brief review of the antioxidant mechanisms and the regulation of the Nrf2 (nuclear factor (erythroid-derived 2)-like 2) signaling pathway by andrographolide.


2016 ◽  
Vol 131 (2) ◽  
pp. 123-138 ◽  
Author(s):  
Veronica Begni ◽  
Marco Andrea Riva ◽  
Annamaria Cattaneo

Brain-derived neurotrophic factor (BDNF) is a neurotrophin that plays a key role in the central nervous system, promoting synaptic plasticity, neurogenesis and neuroprotection. The BDNF gene structure is very complex and consists of multiple 5′-non-coding exons, which give rise to differently spliced transcripts, and one coding exon at the 3′-end. These multiple transcripts, together with the complex transcriptional regulatory machinery, lead to a complex and fine regulation of BDNF expression that can be tissue and stimulus specific. BDNF effects are mainly mediated by the high-affinity, tropomyosin-related, kinase B receptor and involve the activation of several downstream cascades, including the mitogen-activated protein kinase, phospholipase C-γ and phosphoinositide-3-kinase pathways. BDNF exerts a wide range of effects on neuronal function, including the modulation of activity-dependent synaptic plasticity and neurogenesis. Importantly, alterations in BDNF expression and function are involved in different brain disorders and represent a major downstream mechanism for stress response, which has important implications in psychiatric diseases, such as major depressive disorders and schizophrenia. In the present review, we have summarized the main features of BDNF in relation to neuronal plasticity, stress response and pathological conditions, and discussed the role of BDNF as a possible target for pharmacological and non-pharmacological treatments in the context of psychiatric illnesses.


2012 ◽  
Vol 2012 ◽  
pp. 1-14 ◽  
Author(s):  
Hayato Nakagawa ◽  
Shin Maeda

Hepatocellular carcinoma (HCC) is the third most common cause of cancer mortality. Short-term prognosis of patients with HCC has improved recently due to advances in early diagnosis and treatment, but long-term prognosis is still unsatisfactory. Therefore, obtaining a further understanding of the molecular carcinogenic mechanisms and the unique pathogenic biology of HCC is important. The most characteristic process in hepatocarcinogenesis is underlying chronic liver injury, which leads to repeated cycles of hepatocyte death, inflammation, and compensatory proliferation and subsequently provides a mitogenic and mutagenic environment leading to the development of HCC. Recent in vivo studies have shown that the stress-activated mitogen-activated protein kinase (MAPK) cascade converging on c-Jun NH2-terminal kinase (JNK) and p38 plays a central role in these processes, and it has attracted considerable attention as a therapeutic target. However, JNK and p38 have complex functions and a wide range of cellular effects. In addition, crosstalk with each other and the nuclear factor-kappaB pathway further complicate these functions. A full understanding is essential to bring these observations into clinical settings. In this paper, we discuss the latest findings regarding the mechanisms of liver injury and hepatocarcinogenesis focusing on the role of the stress-activated MAPK pathway.


Author(s):  
Minsu PARK ◽  
Hyeon Kyeong CHOI ◽  
Jeung Hee AN

Background: We aimed to elucidate the preventive effects of taurine against osteopenia in ovariectomized (OVX) rats and the mechanisms by which taurine regulates osteoblastogenesis in vitro and in vivo. Methods: The effects of the taurine on human osteoblast MG-63 cell differentiation and osteoblastogenesis effect in OVX rat were examined Konkuk University in 2018 by evaluating osteoblast differentiation, and expression of osteoblast-specific factors by western blotting analysis. Results: Taurine supplementation significantly improved alkaline phosphatase (ALP) activity and mineralization in a concentration-dependent manner. Further, taurine induced the expression of osteogenic growth factors such as bone morphogenetic protein-2 (BMP-2), runt-related transcription factor 2 (RUNX2), small mothers against decapentaplegic 1/5/8 (SMAD1/5/8), wingless-type MMTV integration site family member 3A (Wnt3a), and collagen type 1 (COL-1) via mitogen-activated protein kinase (MAPK) and serine/threonine protein kinase (Akt). Moreover, the RUNX2 activity of the taurine-treated group was enhanced by proteinprotein interactions such as Wnt3a-induced p-AKT/RUNX2 and BMP-mediated SMADs/MAPK/RUNX2 interactions. Conclusion: Our in vitro and in vivo results suggested that taurine can be considered as a potential therapeutic candidate agent for preventing bone loss in postmenopausal osteoporosis.


2019 ◽  
Vol 39 (11) ◽  
Author(s):  
Qianjun Wang ◽  
Qianqian Yang ◽  
Ali Zhang ◽  
Zhiqiang Kang ◽  
Yingsheng Wang ◽  
...  

Abstract Heterotopic ossification (HO), the pathologic formation of extraskeletal bone, can be disabling and lethal. However, the underlying molecular mechanisms were largely unknown. The present study aimed to clarify the involvement of secreted protein acidic and rich in cysteine (SPARC) and the underlying mechanism in rat model of HO. The mechanistic investigation on roles of SPARC in HO was examined through gain- and loss-of-function approaches of SPARC, with alkaline-phosphatase (ALP) activity, mineralized nodules, and osteocalcin (OCN) content measured. To further confirm the regulatory role of SPARC, levels of mitogen-activated protein kinase (MAPK) signaling pathways-related proteins (extracellular signal-regulated kinase (ERK), c-jun N-terminal kinase (JNK), p38, nuclear factor κ-B (NF-κB), and IkB kinase β (IKKβ)) were determined. Bone marrow mesenchymal stem cells were treated with pathway inhibitor to investigate the relationship among SPARC, MAPK signaling pathway, and HO. The results suggested that SPARC expression was up-regulated in Achilles tendon tissues of HO rats. Silencing of SPARC could decrease phosphorylation of ERK, JNK, p38, NF-κB, and IKKβ. Additionally, silencing of SPARC or inhibition of MAPK signaling pathway could reduce the ALP activity, the number of mineralized nodules, and OCN content, thus impeding HO. To sum up, our study identifies the inhibitory role of SPARC gene silencing in HO via the MAPK signaling pathway, suggesting SPARC presents a potential target for HO therapy.


2012 ◽  
Vol 15 (1) ◽  
pp. 15-22
Author(s):  
S Sagalovski

In a review of the literature reflects the modern understanding of the cellular-molecular mechanism development of osteoporosis. Reflects the importance of cytokine RANKL-RANK-OPG sistem and Wnt/β-catenin signaling pathway in the development process of osteoblasto- and osteoclastogenesis. Noting the key role in the process of bone formation a number of molecules of cell signaling pathway and their antagonists are of interest as a target molecule to search for new drugs treatment for osteoporosis.


2021 ◽  
Vol 26 (1) ◽  
Author(s):  
Mina Homayoonfal ◽  
Zatollah Asemi ◽  
Bahman Yousefi

AbstractCancer is a global disease involving transformation of normal cells into tumor types via numerous mechanisms, with mortality among all generations, in spite of the breakthroughs in chemotherapy, radiotherapy and/or surgery for cancer treatment. Since one in six deaths is due to cancer, it is one of the overriding priorities of world health. Recently, bioactive natural compounds have been widely recognized due to their therapeutic effects for treatment of various chronic disorders, notably cancer. Thymoquinone (TQ), the most valuable constituent of black cumin seeds, has shown anti-cancer characteristics in a wide range of animal models. The revolutionary findings have revealed TQ’s ability to regulate microRNA (miRNA) expression, offering a promising approach for cancer therapy. MiRNAs are small noncoding RNAs that modulate gene expression by means of variation in features of mRNA. MiRNAs manage several biological processes including gene expression and cellular signaling pathways. Accordingly, miRNAs can be considered as hallmarks for cancer diagnosis, prognosis and therapy. The purpose of this study was to review the various molecular mechanisms by which TQ exerts its potential as an anti-cancer agent through modulating miRNAs.


Sign in / Sign up

Export Citation Format

Share Document