scholarly journals Sirt1 Activity in PBMCs as a Biomarker of Different Heart Failure Phenotypes

Biomolecules ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1590
Author(s):  
Valeria Conti ◽  
Graziamaria Corbi ◽  
Maria Vincenza Polito ◽  
Michele Ciccarelli ◽  
Valentina Manzo ◽  
...  

Heart Failure (HF) is a syndrome, which implies the existence of different phenotypes. The new categorization includes patients with preserved ejection fraction (HFpEF), mid-range EF (HFmrEF), and reduced EF (HFrEF) but the molecular mechanisms involved in these HF phenotypes have not yet been exhaustively investigated. Sirt1 plays a crucial role in biological processes strongly related to HF. This study aimed to evaluate whether Sirt1 activity was correlated with EF and other parameters in HFpEF, HFmrEF, and HFrEF. Seventy patients, HFpEF (n = 23), HFmrEF (n = 23) and HFrEF (n = 24), were enrolled at the Cardiology Unit of the University Hospital of Salerno. Sirt1 activity was measured in peripheral blood mononuclear cells (PBMCs). Angiotensin-Converting Enzyme 2 (ACE2) activity, Tumor Necrosis Factor-alpha (TNF-α) and Brain Natriuretic Peptide (BNP) levels were quantified in plasma. HFpEF showed lower Sirt1 and ACE2 activities than both HFmrEF and HFrEF (p < 0.0001), without difference compared to No HF controls. In HFmrEF and HFrEF a very strong correlation was found between Sirt1 activity and EF (r2 = 0.899 and r2 = 0.909, respectively), and between ACE2 activity and Sirt1 (r2 = 0.801 and r2 = 0.802, respectively). HFrEF showed the highest TNF-α levels without reaching statistical significance. Significant differences in BNP were found among the groups, with the highest levels in the HFrEF. Determining Sirt1 activity in PBMCs is useful to distinguish the HF patients’ phenotypes from each other, especially HFmrEF/HFrEF from HFpEF.

2018 ◽  
Vol 86 (4) ◽  
Author(s):  
Patricia F. Herkert ◽  
Jessica C. dos Santos ◽  
Ferry Hagen ◽  
Fatima Ribeiro-Dias ◽  
Flávio Queiroz-Telles ◽  
...  

ABSTRACT Cryptococcal species vary in capsule and cell size, thermotolerance, geographic distribution, and affected populations. Cryptococcus gattii sensu stricto and C. deuterogattii affect mainly immunocompetent hosts; however, C. bacillisporus , C. decagattii , and C. tetragattii cause infections mainly in immunocompromised hosts. This study aimed to compare the capacities of different species of the C. gattii species complex to induce cytokines and antimicrobial molecules in human peripheral blood mononuclear cells (PBMCs). Cryptococcus bacillisporus and C. deuterogattii induced the lowest levels of tumor necrosis factor alpha (TNF-α), interleukin-1β (IL-1β), and IL-6 among the five species of the C. gattii complex. Cryptococcus deuterogattii induced higher levels of IL-22 than those induced by C. tetragattii and the environmental species C. flavescens . In addition, C. bacillisporus and C. gattii sensu stricto proliferated inside human monocyte-derived macrophages after 24 h of infection. All Cryptococcus species were able to generate reactive oxygen species (ROS) in human PBMCs, with C. bacillisporus and C. deuterogattii being more efficient than the other species. In conclusion, C. bacillisporus and C. deuterogattii induce lower levels of the proinflammatory cytokines TNF-α, IL-1β, and IL-6 and higher ROS levels than those induced by the other species. Species of the Cryptococcus gattii complex have different abilities to induce cytokine and ROS production by human PBMCs.


1999 ◽  
Vol 67 (9) ◽  
pp. 4977-4981 ◽  
Author(s):  
Douglas J. Perkins ◽  
Peter G. Kremsner ◽  
Daniela Schmid ◽  
Mary A. Misukonis ◽  
Meghan A. Kelly ◽  
...  

ABSTRACT Plasmodium falciparum malaria is an important cause of morbidity and mortality in children. Factors that determine the development of mild versus severe malaria are not fully understood. Since host-derived nitric oxide (NO) has antiplasmodial properties, we measured NO production and NO synthase (NOS) activity in peripheral blood mononuclear cells (PBMC) from healthy Gabonese children with a history of prior mild malaria (PMM) or prior severe malaria (PSM) caused by P. falciparum. The PMM group had significantly higher levels of NOS activity in freshly isolated PBMC and higher NO production and NOS activity in cultured PBMC. The investigation of NO-modulating cytokines (e.g., interleukin 12, gamma interferon, tumor necrosis factor alpha [TNF-α], and transforming growth factor β1) as an explanation for differing levels of NOS activity revealed that plasma levels of TNF-α were significantly higher in the PSM group. Our results suggest that NOS/ NO and TNF-α are markers for prior disease severity and important determinants of resistance to malaria.


Author(s):  
Sangeeta Mohanty ◽  
Abhisek Pal ◽  
V Badireenath Konkimalla ◽  
Sudam Chandra Si

Objective: The objective of this study was to establish the anti-inflammatory activity of sulforaphane (SFN) in different acute and subchronic models of inflammation. Methods: The anti-inflammatory activity of SFN was evaluated by the secretion of proinflammatory cytokines in rat peripheral blood mononuclear cells (interleukin-6 [IL-6] and tumor necrosis factor alpha [TNF-α]) which are important mediators of inflammation as determined by enzyme-linked immunosorbent assay. Furthermore, paw volume was determined in various acute models of inflammation, and percentage inhibition of granuloma tissue was assessed by cotton pellet-induced granuloma model. From serum, serum glutamic pyruvic transaminase, serum glutamic oxaloacetic transaminase, and alkaline phosphatase levels were determined which is followed by assay for estimation of antioxidants such as superoxide dismutase (SOD), catalase, and glutathione (GSH). Results: SFN showed significant anti-inflammatory activity against paw edema induced by carrageenin/histamine/egg-albumin. A remarkable control in inflammation was observed most notably at the highest test dose of 5 mg/kg in the subchronic granuloma model. In addition, the release of inflammatory cytokines such as IL-6 and TNF-α which is responsible for inflammatory activity gets attenuated by SFN (∗p<0.05; ∗∗p< 0.01). Moreover, toxic control rats showed significant decreased levels of GSH, catalase, and SOD and increased the level of serum hepatic enzymes which gets reversed by SFN in dose-dependent manner. Conclusions: The present findings demonstrated that SFN can recover inflammation by inhibiting TNF-α and IL-6 in inflammation process.


2006 ◽  
Vol 13 (3) ◽  
pp. 319-328 ◽  
Author(s):  
Madhavan P. Nair ◽  
Supriya Mahajan ◽  
Jessica L. Reynolds ◽  
Ravikumar Aalinkeel ◽  
Harikrishnan Nair ◽  
...  

ABSTRACT The flavonoids comprise a large class of low-molecular-weight plant metabolites ubiquitously distributed in food plants. These dietary antioxidants exert significant antitumor, antiallergic, and anti-inflammatory effects. The molecular mechanisms of their biological effects remain to be clearly understood. We investigated the anti-inflammatory potentials of a safe, common dietary flavonoid component, quercetin, for its ability to modulate the production and gene expression of the proinflammatory cytokine tumor necrosis factor alpha (TNF-α) by human peripheral blood mononuclear cells (PBMC). Our results showed that quercetin significantly inhibited TNF-α production and gene expression in a dose-dependent manner. Our results provide direct evidence of the anti-inflammatory effects of quercetin by PBMC, which are mediated by the inhibition of the proinflammatory cytokine TNF-α via modulation of NF-κβ1 and Iκβ.


1998 ◽  
Vol 42 (8) ◽  
pp. 1911-1916 ◽  
Author(s):  
Anja Lührmann ◽  
Jürgen Thölke ◽  
Ingrid Behn ◽  
Jens Schumann ◽  
Gisa Tiegs ◽  
...  

ABSTRACT We show that the coumeromycin antibiotic novobiocin, a potent inhibitor of ADP ribosylation, prevents lipopolysaccharide (LPS)-induced tumor necrosis factor alpha (TNF-α), interleukin-1 (IL-1), IL-6, and IL-10 secretion in human peripheral blood mononuclear cells. It shares these cytokine-suppressing properties with other inhibitors of ADP ribosylation. We found that novobiocin prevents TNF-α production by inhibiting translation of the TNF-α mRNA. Elevated TNF-α levels in mice treated withd-galactosamine (GalN)-LPS or GalN-TNF were not reduced by novobiocin; however, the drug exhibited hepatoprotective properties. Novobiocin causes downregulation of the surface molecules on monocytes, among which CD14 was the most affected. The diminished expression of surface molecules was not observed on T and B lymphocytes. Similar to other inhibitors of ADP ribosylation, novobiocin prevents LPS-induced phosphate labelling of γ-actins.


2019 ◽  
Vol 87 (6) ◽  
Author(s):  
Martijn D. B. van de Garde ◽  
Els van Westen ◽  
Martien C. M. Poelen ◽  
Nynke Y. Rots ◽  
Cécile A. C. M. van Els

ABSTRACTCD4+T-cell mechanisms are implied in protection against pneumococcal colonization; however, their target antigens and function are not well defined. In contrast to high-throughput protein arrays for serology, basic antigen tools for CD4+T-cell studies are lacking. Here, we evaluate the potential of a bioinformatics tool forin silicoprediction of immunogenicity as a method to reveal domains of pneumococcal proteins targeted by human CD4+T cells. For 100 pneumococcal proteins, CD4+T-cell immunogenicity was predicted based on HLA-DRB1 binding motifs. For 20 potentially CD4+T-cell immunogenic proteins, epitope regions were verified by testing synthetic peptides in T-cell assays using peripheral blood mononuclear cells from healthy adults. Peptide pools of 19 out of 20 proteins evoked T-cell responses. The most frequent responses (detectable in ≥20% of donors tested) were found to SP_0117 (PspA), SP_0468 (putative sortase), SP_0546 (BlpZ), SP_1650 (PsaA), SP_1923 (Ply), SP_2048 (conserved hypothetical protein), SP_2216 (PscB), and SPR_0907 (PhtD). Responding donors had diverging recognition patterns and profiles of signature cytokines (gamma interferon [IFN-γ], tumor necrosis factor alpha [TNF-α], interleukin-13 [IL-13], and/or IL-17A) against single-epitope regions. Natural HLA-DR-restricted presentation and recognition of a predicted SP_1923-derived epitope were validated through the isolation of a CD4+T-cell clone producing IFN-γ, TNF-α, and IL-17A in response to the synthetic peptide, whole protein, and heat-inactivated pneumococcus. This proof of principle for a bioinformatics tool to identify pneumococcal protein epitopes targeted by human CD4+T cells provides a peptide-based strategy to study cell-mediated immune mechanisms for the pneumococcal proteome, advancing the development of immunomonitoring assays and targeted vaccine approaches.


2006 ◽  
Vol 74 (9) ◽  
pp. 5249-5260 ◽  
Author(s):  
Christopher C. Keller ◽  
Ouma Yamo ◽  
Collins Ouma ◽  
John Michael Ong'echa ◽  
David Ounah ◽  
...  

ABSTRACT Severe malarial anemia (SMA) is a primary cause of morbidity and mortality in immune-naïve infants and young children residing in areas of holoendemic Plasmodium falciparum transmission. Although the immunopathogenesis of SMA is largely undefined, we have previously shown that systemic interleukin-12 (IL-12) production is suppressed during childhood blood-stage malaria. Since IL-10 and tumor necrosis factor alpha (TNF-α) are known to decrease IL-12 synthesis in a number of infectious diseases, altered transcriptional regulation of these inflammatory mediators was investigated as a potential mechanism for IL-12 down-regulation. Ingestion of naturally acquired malarial pigment (hemozoin [PfHz]) by monocytes promoted the overproduction of IL-10 and TNF-α relative to the production of IL-12, which correlated with an enhanced severity of malarial anemia. Experiments with cultured peripheral blood mononuclear cells (PBMC) and CD14+ cells from malaria-naïve donors revealed that physiological concentrations of PfHz suppressed IL-12 and augmented IL-10 and TNF-α by altering the transcriptional kinetics of IL-12p40, IL-10, and TNF-α, respectively. IL-10 neutralizing antibodies, but not TNF-α antibodies, restored PfHz-induced suppression of IL-12. Blockade of IL-10 and the addition of recombinant IL-10 to cultured PBMC from children with SMA confirmed that IL-10 was responsible for malaria-induced suppression of IL-12. Taken together, these results demonstrate that PfHz-induced up-regulation of IL-10 is responsible for the suppression of IL-12 during malaria.


Sign in / Sign up

Export Citation Format

Share Document