scholarly journals Irisin Association with Ki-67, MCM3 and MT-I/II in Squamous Cell Carcinomas of the Larynx

Biomolecules ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 52
Author(s):  
Agnieszka Pinkowska ◽  
Katarzyna Nowinska ◽  
Urszula Ciesielska ◽  
Marzenna Podhorska-Okolow

Background: Current studies indicate irisin role in carcinogenesis. The aim of the study was to investigate the expression of irisin in LSCCs and to determine its association with clinicopathological factors, as well as recognized markers of proliferation, i.e., Ki-67 and MCM3,5,7 and MT-I/II proteins. Material and methods: The research material consisted of 140 cases of LSCCs, 57 cases of laryngeal papillomas (BLs) and 14 controls (benign hypertrophic changes). Tissue microarrays were used to perform IHC. Western blot and immunofluorescence were performed in laryngeal cancer cell lines and normal keratinocytes. Results: Irisin expression levels were significantly increased in LSCC compared to BLs (p < 0.0001) and controls (p = 0.001). We noted a positive moderate and weak correlation between irisin and Ki-67, MCM3 and MT-I/II. We observed an elevated level of irisin expression with increasing tumor size (T1–2 vs. T3–4; p = 0.0348). The levels of irisin were higher in N0 than in N1 and N2–3 (p = 0.0031 and p = 0.0457, respectively). Our in vitro study revealed a higher level of irisin in Larynx Epidermoid Carcinoma 2 (HEp-2) cells compared to the control Normal Human Keratinocyte (HaCat) cell line. Conclusions: Increased irisin expression levels in LSCC and its correlation with clinicopathological and proliferation factors may indicate the potential role of irisin as a biomarker in the diagnostic process of LSCC.

BMC Cancer ◽  
2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Qiong Jiang ◽  
Qing Xie ◽  
Chengliang Hu ◽  
Zhai Yang ◽  
Peizhi Huang ◽  
...  

Abstract Background Gliomas account for the majority of primary human brain tumors and remain a challenging neoplasm for cure due to limited therapeutic options. Cell adhesion molecules play pivotal roles in the growth and progression of glial tumors. Roles of the adhesion molecules on glia (AMOG) and L1CAM (L1) in glioma cells have been shown to correlate with tumorigenesis: Increased expression of L1 and decreased expression of AMOG correlate with degree of malignancy. Methods We evaluated the interdependence in expression of these molecules by investigating the role of AMOG in vitro via modulation of L1 expression and analyzing apoptosis and cell senescence of glioma cells. Results Immunohistochemical staining of normal human cortical and glioma tissue microarrays demonstrated that AMOG expression was lower in human gliomas compared to normal tissue and is inversely correlated with the degree of malignancy. Moreover, reduction of AMOG expression in human glioblastoma cells elevated L1 expression, which is accompanied by decreased cell apoptosis as well as senescence. Conclusion AMOG and L1 interdependently regulate their expression levels not only in U-87 MG cells but also in U251 and SHG44 human glioma cell lines. The capacity of AMOG to reduce L1 expression suggests that methods for increasing AMOG expression may provide a therapeutic choice for the management of glial tumors with high expression of L1.


Cancers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2560
Author(s):  
Luis G. Guijarro ◽  
Patricia Sanmartin-Salinas ◽  
Eva Pérez-Cuevas ◽  
M. Val Toledo-Lobo ◽  
Jorge Monserrat ◽  
...  

New evidence suggests that insulin receptor substrate 4 (IRS-4) may play an important role in the promotion of tumoral growth. In this investigation, we have evaluated the role of IRS-4 in a pilot study performed on patients with liver cancer. We used immunohistochemistry to examine IRS-4 expression in biopsies of tumoral tissue from a cohort of 31 patient suffering of hepatocellular carcinoma (HCC). We simultaneously analyzed the expression of the cancer biomarkers PCNA, Ki-67, and pH3 in the same tissue samples. The in vitro analysis was conducted by studying the behavior of HepG2 cells following IRS-4 overexpression/silencing. IRS-4 was expressed mainly in the nuclei of tumoral cells from HCC patients. In contrast, in healthy cells involved in portal triads, canaliculi, and parenchymal tissue, IRS-4 was observed in the cytosol and the membrane. Nuclear IRS-4 in the tumoral region was found in 69.9 ± 3.2%, whereas in the surrounding healthy hepatocytes, nuclear IRS-4 was rarely observed. The percentage of tumoral cells that exhibited nuclear PCNA and Ki-67 were 52.1 ± 7%, 6.1 ± 1.1% and 1.3 ± 0.2%, respectively. Furthermore, we observed a significant positive linear correlation between nuclear IRS-4 and PCNA (r = 0.989; p < 0.001). However, when we correlated the nuclear expression of IRS-4 and Ki-67, we observed a significant positive curvilinear correlation (r = 0.758; p < 0.010). This allowed us to define two populations, (IRS-4 + Ki-67 ≤ 69%) and (IRS-4 + Ki-67 > 70%). The population with lower levels of IRS-4 and Ki-67 had a higher risk of suffering from multifocal liver cancer (OR = 16.66; CI = 1.68–164.8 (95%); p < 0.05). Immunoblot analyses showed that IRS-4 in normal human liver biopsies was lower than in HepG2, Huh7, and Chang cells. Treatment of HepG2 with IGF-1 and EGF induced IRS-4 translocation to the nucleus. Regulation of IRS-4 levels via HepG2 transfection experiments revealed the protein’s role in proliferation, cell migration, and cell-collagen adhesion. Nuclear IRS-4 is increased in the tumoral region of HCC. IRS-4 and Ki-67 levels are significantly correlated with the presence of multifocal HCC. Moreover, upregulation of IRS-4 in HepG2 cells induced proliferation by a β-catenin/Rb/cyclin D mechanism, whereas downregulation of IRS-4 caused a loss in cellular polarity and in its adherence to collagen as well as a gain in migratory and invasive capacities, probably via an integrin α2 and focal adhesion cascade (FAK) mechanism.


Author(s):  
Jun-Xian Du ◽  
Yi-Hong Luo ◽  
Si-Jia Zhang ◽  
Biao Wang ◽  
Cong Chen ◽  
...  

Abstract Background Intensive evidence has highlighted the effect of aberrant alternative splicing (AS) events on cancer progression when triggered by dysregulation of the SR protein family. Nonetheless, the underlying mechanism in breast cancer (BRCA) remains elusive. Here we sought to explore the molecular function of SRSF1 and identify the key AS events regulated by SRSF1 in BRCA. Methods We conducted a comprehensive analysis of the expression and clinical correlation of SRSF1 in BRCA based on the TCGA dataset, Metabric database and clinical tissue samples. Functional analysis of SRSF1 in BRCA was conducted in vitro and in vivo. SRSF1-mediated AS events and their binding motifs were identified by RNA-seq, RNA immunoprecipitation-PCR (RIP-PCR) and in vivo crosslinking followed by immunoprecipitation (CLIP), which was further validated by the minigene reporter assay. PTPMT1 exon 3 (E3) AS was identified to partially mediate the oncogenic role of SRSF1 by the P-AKT/C-MYC axis. Finally, the expression and clinical significance of these AS events were validated in clinical samples and using the TCGA database. Results SRSF1 expression was consistently upregulated in BRCA samples, positively associated with tumor grade and the Ki-67 index, and correlated with poor prognosis in a hormone receptor-positive (HR+) cohort, which facilitated proliferation, cell migration and inhibited apoptosis in vitro and in vivo. We identified SRSF1-mediated AS events and discovered the SRSF1 binding motif in the regulation of splice switching of PTPMT1. Furthermore, PTPMT1 splice switching was regulated by SRSF1 by binding directly to its motif in E3 which partially mediated the oncogenic role of SRSF1 by the AKT/C-MYC axis. Additionally, PTPMT1 splice switching was validated in tissue samples of BRCA patients and using the TCGA database. The high-risk group, identified by AS of PTPMT1 and expression of SRSF1, possessed poorer prognosis in the stage I/II TCGA BRCA cohort. Conclusions SRSF1 exerts oncogenic roles in BRCA partially by regulating the AS of PTPMT1, which could be a therapeutic target candidate in BRCA and a prognostic factor in HR+ BRCA patient.


2021 ◽  
Vol 165 ◽  
pp. 39
Author(s):  
Francesca Lombardi ◽  
Silvano Santini ◽  
Paola Palumbo ◽  
Valeria Cordone ◽  
Virginio Bignotti ◽  
...  

2021 ◽  
Vol 22 (8) ◽  
pp. 3873
Author(s):  
Gabriel Luta ◽  
Mihail Butura ◽  
Adrian Tiron ◽  
Crina E. Tiron

Background: In the latest years, there has been an increased interest in nanomaterials that may provide promising novel approaches to disease diagnostics and therapeutics. Our previous results demonstrated that Carbon-dots prepared from N-hydroxyphthalimide (CD-NHF) exhibited anti-tumoral activity on several cancer cell lines such as MDA-MB-231, A375, A549, and RPMI8226, while U87 glioma tumor cells were unaffected. Gliomas represent one of the most common types of human primary brain tumors and are responsible for the majority of deaths. In the present in vitro study, we expand our previous investigation on CD-NHF in the U87 cell line by adding different drug combinations. Methods: Cell viability, migration, invasion, and immunofluorescent staining of key molecular pathways have been assessed after various treatments with CD-NHF and/or K252A and AKTVIII inhibitors in the U87 cell line. Results: Association of an inhibitor strongly potentiates the anti-tumoral properties of CD-NHF identified by significant impairment of migration, invasion, and expression levels of phosphorylated Akt, p70S6Kinase, or by decreasing expression levels of Bcl-2, IL-6, STAT3, and Slug. Conclusions: Using simultaneously reduced doses of both CD-NHF and an inhibitor in order to reduce side effects, the viability and invasiveness of U87 glioma cells were significantly impaired.


Author(s):  
Sarah McCarrick ◽  
Valentin Romanovski ◽  
Zheng Wei ◽  
Elin M. Westin ◽  
Kjell-Arne Persson ◽  
...  

AbstractWelders are daily exposed to various levels of welding fumes containing several metals. This exposure can lead to an increased risk for different health effects which serves as a driving force to develop new methods that generate less toxic fumes. The aim of this study was to explore the role of released metals for welding particle-induced toxicity and to test the hypothesis that a reduction of Cr(VI) in welding fumes results in less toxicity by comparing the welding fume particles of optimized Cr(VI)-reduced flux-cored wires (FCWs) to standard FCWs. The welding particles were thoroughly characterized, and toxicity (cell viability, DNA damage and inflammation) was assessed following exposure to welding particles as well as their released metal fraction using cultured human bronchial epithelial cells (HBEC-3kt, 5–100 µg/mL) and human monocyte-derived macrophages (THP-1, 10–50 µg/mL). The results showed that all Cr was released as Cr(VI) for welding particles generated using standard FCWs whereas only minor levels (< 3% of total Cr) were released from the newly developed FCWs. Furthermore, the new FCWs were considerably less cytotoxic and did not cause any DNA damage in the doses tested. For the standard FCWs, the Cr(VI) released in cell media seemed to explain a large part of the cytotoxicity and DNA damage. In contrast, all particles caused rather similar inflammatory effects suggesting different underlying mechanisms. Taken together, this study suggests a potential benefit of substituting standard FCWs with Cr(VI)-reduced wires to achieve less toxic welding fumes and thus reduced risks for welders.


1994 ◽  
Vol 107 (4) ◽  
pp. 983-992 ◽  
Author(s):  
A. Tang ◽  
M.S. Eller ◽  
M. Hara ◽  
M. Yaar ◽  
S. Hirohashi ◽  
...  

E- and P-cadherin are calcium (Ca2+)-dependent cell adhesion molecules important in the morphogenesis and maintenance of skin structure. By use of flow cytometry and specific antibodies, we now show that cultured human melanocytes express E- and P-cadherin on their surfaces, and that these molecules have the same characteristics as reported for other cell types. Specifically, melanocyte cadherins are sensitive to trypsin digestion in the absence of Ca2+ and are protected from trypsin degradation by Ca2+, and are functional at 37 degrees C but not at 4 degrees C. We further show that melanocytes contain mRNA transcripts encoding both E- and P-cadherin. Adhesion of cultured melanocytes to keratinocyte monolayers is abolished by pre-treatment of the melanocytes with trypsin/EDTA, which degrades E- and P-cadherins, is greatly reduced by anti-E-cadherin antibodies and is slightly reduced by antibodies to P-cadherin, alpha 2, alpha 3 and beta 1 integrins. In contrast to normal melanocytes, eight of nine melanoma cell lines lacked E-cadherin (or expressed markedly reduced levels) and five were negative for P-cadherin. Melanoma cells also failed to adhere to keratinocyte monolayers. These results demonstrate that normal human melanocytes express functional E- and P-cadherin and that E-cadherin is primarily responsible for adhesion of human melanocytes to keratinocytes in vitro. In addition, transformed melanocytes express markedly reduced levels of E- and P-cadherin, and exhibit decreased affinity for normal keratinocytes in vitro, suggesting that loss of cadherins may play a role in melanoma metastasis.


2017 ◽  
Vol 19 (suppl_6) ◽  
pp. vi250-vi250
Author(s):  
Anurag N Paranjape ◽  
Brunilde Gril ◽  
Stephan Woditschka ◽  
Jeffrey Hanson ◽  
Xiaolin Wu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document