scholarly journals Progress in the Development of Chitosan-Based Biomaterials for Tissue Engineering and Regenerative Medicine

Biomolecules ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 470 ◽  
Author(s):  
Bolat Sultankulov ◽  
Dmitriy Berillo ◽  
Karina Sultankulova ◽  
Tursonjan Tokay ◽  
Arman Saparov

Over the last few decades, chitosan has become a good candidate for tissue engineering applications. Derived from chitin, chitosan is a unique natural polysaccharide with outstanding properties in line with excellent biodegradability, biocompatibility, and antimicrobial activity. Due to the presence of free amine groups in its backbone chain, chitosan could be further chemically modified to possess additional functional properties useful for the development of different biomaterials in regenerative medicine. In the current review, we will highlight the progress made in the development of chitosan-containing bioscaffolds, such as gels, sponges, films, and fibers, and their possible applications in tissue repair and regeneration, as well as the use of chitosan as a component for drug delivery applications.

2020 ◽  
Vol 8 ◽  
Author(s):  
Xiaobing Fu

Abstract Wound healing, tissue repair and regenerative medicine are in great demand, and great achievements in these fields have been made. In recent years, many of these successes have benefitted patients, especially in the field of chronic skin wounds. However, perfect tissue repair and regeneration of damaged tissues and organs are still great challenges in the management of trauma and diseases. In this paper, the main achievements in wound healing, tissue repair and regeneration in China are reviewed and the establishment of wound healing centers and new technology application in improving wound healing quality in patients in China is highlighted.


Biomolecules ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 619 ◽  
Author(s):  
Jahangirian ◽  
Azizi ◽  
Rafiee-Moghaddam ◽  
Baratvand ◽  
Webster

In recent decades, regenerative medicine has merited substantial attention from scientific and research communities. One of the essential requirements for this new strategy in medicine is the production of biocompatible and biodegradable scaffolds with desirable geometric structures and mechanical properties. Despite such promise, it appears that regenerative medicine is the last field to embrace green, or environmentally-friendly, processes, as many traditional tissue engineering materials employ toxic solvents and polymers that are clearly not environmentally friendly. Scaffolds fabricated from plant proteins (for example, zein, soy protein, and wheat gluten), possess proper mechanical properties, remarkable biocompatibility and aqueous stability which make them appropriate green biomaterials for regenerative medicine applications. The use of plant-derived proteins in regenerative medicine has been especially inspired by green medicine, which is the use of environmentally friendly materials in medicine. In the current review paper, the literature is reviewed and summarized for the applicability of plant proteins as biopolymer materials for several green regenerative medicine and tissue engineering applications.


2008 ◽  
Vol 14 (1) ◽  
pp. 105-118 ◽  
Author(s):  
S. Geetha Priya ◽  
Hans Jungvid ◽  
Ashok Kumar

Author(s):  
Muhammad Shafiq ◽  
Onaza Ali ◽  
Seong-Beom Han ◽  
Dong-Hwee Kim

Stem cells have been extensively used in regenerative medicine and tissue engineering; however, they often lose their functionality because of the inflammatory microenvironment. This leads to their poor survival, retention, and engraftment at transplantation sites. Considering the rapid loss of transplanted cells due to poor cell-cell and cell-extracellular matrix (ECM) interactions during transplantation, it has been reasoned that stem cells mainly mediate reparative responses via paracrine mechanisms, including the secretion of extracellular vesicles (EVs). Ameliorating poor cell-cell and cell-ECM interactions may obviate the limitations associated with the poor retention and engraftment of transplanted cells and enable them to mediate tissue repair through the sustained and localized presentation of secreted bioactive cues. Biomaterial-mediated strategies may be leveraged to confer stem cells enhanced immunomodulatory properties, as well as better engraftment and retention at the target site. In these approaches, biomaterials have been exploited to spatiotemporally present bioactive cues to stem cell-laden platforms (e.g., aggregates, microtissues, and tissue-engineered constructs). An array of biomaterials, such as nanoparticles, hydrogels, and scaffolds, has been exploited to facilitate stem cells function at the target site. Additionally, biomaterials can be harnessed to suppress the inflammatory microenvironment to induce enhanced tissue repair. In this review, we summarize biomaterial-based platforms that impact stem cell function for better tissue repair that may have broader implications for the treatment of various diseases as well as tissue regeneration.


Author(s):  
Elisa Mazzoni ◽  
Maria Rosa Iaquinta ◽  
Carmen Lanzillotti ◽  
Chiara Mazziotta ◽  
Martina Maritati ◽  
...  

Over the past decades, age-related pathologies have increased abreast the aging population worldwide. The increased age of the population indicates that new tools, such as biomaterials/scaffolds for damaged tissues, which display high efficiency, effectively and in a limited period of time, for the regeneration of the body's tissue are needed. Indeed, scaffolds can be used as templates for three-dimensional tissue growth in order to promote the tissue healing stimulating the body's own regenerative mechanisms. In tissue engineering, several types of biomaterials are employed, such as bioceramics including calcium phosphates, bioactive glasses, and glass–ceramics. These scaffolds seem to have a high potential as biomaterials in regenerative medicine. In addition, in conjunction with other materials, such as polymers, ceramic scaffolds may be used to manufacture composite scaffolds characterized by high biocompatibility, mechanical efficiency and load-bearing capabilities that render these biomaterials suitable for regenerative medicine applications. Usually, bioceramics have been used to repair hard tissues, such as bone and dental defects. More recently, in the field of soft tissue engineering, this form of scaffold has also shown promising applications. Indeed, soft tissues are continuously exposed to damages, such as burns or mechanical traumas, tumors and degenerative pathology, and, thereby, thousands of people need remedial interventions such as biomaterials-based therapies. It is known that scaffolds can affect the ability to bind, proliferate and differentiate cells similar to those of autologous tissues. Therefore, it is important to investigate the interaction between bioceramics and somatic/stem cells derived from soft tissues in order to promote tissue healing. Biomimetic scaffolds are frequently employed as drug-delivery system using several therapeutic molecules to increase their biological performance, leading to ultimate products with innovative functionalities. This review provides an overview of essential requirements for soft tissue engineering biomaterials. Data on recent progresses of porous bioceramics and composites for tissue repair are also presented.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yaya Tang ◽  
Yan Zhou ◽  
Hong-Jun Li

AbstractStem cells can be used for regenerative medicine and as treatments for disease. The application of tissue engineering-related transplantation, stem cells, and local changes in the microenvironment is expected to solve major medical problems. Currently, most studies focus on tissue repair and regeneration, and mesenchymal stem cells (MSCs) are among the most common research topics. MSCs are applicable as seed cells, and they represent one of the current hot topics in regenerative medicine research. However, due to storage limitations and because cell senescence occurs during in vitro expansion, their clinical application is challenging. Exosomes, which are secreted by MSCs through paracrine signalling, not only have the same effects as MSCs, but they also have the advantages of targeted delivery, low immunogenicity, and high repairability. This article reviews the acquisition methods, characteristics, biological functions, and clinical applications of exosomes.


2020 ◽  
Vol 15 (2) ◽  
pp. 111-134 ◽  
Author(s):  
Lekkala Vinod Kumar Reddy ◽  
Durai Murugan ◽  
Madhubanti Mullick ◽  
Erfath Thanjeem Begum Moghal ◽  
Dwaipayan Sen

Angiogenesis plays a central role in human physiology from reproduction and fetal development to wound healing and tissue repair/regeneration. Clinically relevant therapies are needed for promoting angiogenesis in order to supply oxygen and nutrients after transplantation, thus relieving the symptoms of ischemia. Increase in angiogenesis can lead to the restoration of damaged tissues, thereby leading the way for successful tissue regeneration. Tissue regeneration is a broad field that has shown the convergence of various interdisciplinary fields, wherein living cells in conjugation with biomaterials have been tried and tested on to the human body. Although there is a prevalence of various approaches that hypothesize enhanced tissue regeneration via angiogenesis, none of them have been successful in gaining clinical relevance. Hence, the current review summarizes the recent cell-based and cell free (exosomes, extracellular vesicles, micro-RNAs) therapies, gene and biomaterial-based approaches that have been used for angiogenesis-mediated tissue regeneration and have been applied in treating disease models like ischemic heart, brain stroke, bone defects and corneal defects. This review also puts forward a concise report of the pre-clinical and clinical studies that have been performed so far; thereby presenting the credible impact of the development of biomaterials and their 3D concepts in the field of tissue engineering and regeneration, which would lead to the probable ways for heralding the successful future of angiogenesis-mediated approaches in the greater perspective of tissue engineering and regenerative medicine.


Author(s):  
Gowrisankar L ◽  
Ganesh Murali J ◽  
Usha P

The development of new materials and the enhancement of existing materials to develop skin regeneration are wide areas of research in polymeric biomaterials. The paper presents the analysis of a wide range of several natural polymers such as proteins and polysaccharides which can be utilized for skin tissue repair and regeneration. The reviews look at the few examples of commercially available natural - origin polymers with applications in tissue engineering. Natural polymers, such as proteins and polysaccharides, being components of, or structurally similar to, the glycosaminoglycans in the extracellular matrix (ECM) are valuable materials for tissue engineering applications. Natural polymers have great coincidence to natural ECM elements, particularly in biocompatibility and biodegradability. In this paper, the attention is focused on several natural polymers that found application in research work for drug or cell delivery within the skin tissue engineering field, namely collagen, chitin, chitosan, alginate, gellan, gelatin, and curcumin.


Sign in / Sign up

Export Citation Format

Share Document