scholarly journals CRISPR/Cas9-Mediated Multiplex Genome Editing of JAGGED Gene in Brassica napus L.

Biomolecules ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 725 ◽  
Author(s):  
Qamar U Zaman ◽  
Wen Chu ◽  
Mengyu Hao ◽  
Yuqin Shi ◽  
Mengdan Sun ◽  
...  

Pod shattering resistance is an essential component to achieving a high yield, which is a substantial objective in polyploid rapeseed cultivation. Previous studies have suggested that the Arabidopsis JAGGED (JAG) gene is a key factor implicated in the regulatory web of dehiscence fruit. However, its role in controlling pod shattering resistance in oilseed rape is still unknown. In this study, multiplex genome editing was carried out by the CRISPR/Cas9 system on five homoeologs (BnJAG.A02, BnJAG.C02, BnJAG.C06, BnJAG.A07, and BnJAG.A08) of the JAG gene. Knockout mutagenesis of all homoeologs drastically affected the development of the lateral organs in organizing pod shape and size. The cylindrical body of the pod comprised a number of undifferentiated cells like a callus, without distinctive valves, replum, septum, and valve margins. Pseudoseeds were produced, which were divided into two halves with an incomplete layer of cells (probably septum) that separated the undifferentiated cells. These mutants were not capable of generating any productive seeds for further generations. However, one mutant line was identified in which only a BnJAG.A08-NUB-Like paralog of the JAG gene was mutated. Knockout mutagenesis in BnJAG.A08-NUB gene caused significant changes in the pod dehiscence zone. The replum region of the mutant was increased to a great extent, resulting in enlarged cell size, bumpy fruit, and reduced length compared with the wild type. A higher replum–valve joint area may have increased the resistance to pod shattering by ~2-fold in JAG mutants compared with wild type. Our results offer a basis for understanding variations in Brassica napus fruit by mutating JAG genes and providing a way forward for other Brassicaceae species.

2021 ◽  
Vol 4 (3) ◽  
pp. 360-370
Author(s):  
Qamar U. Zaman ◽  
Chu Wen ◽  
Shi Yuqin ◽  
Hao Mengyu ◽  
Mei Desheng ◽  
...  

2019 ◽  
Vol 132 (7) ◽  
pp. 2111-2123 ◽  
Author(s):  
Yungu Zhai ◽  
Shengli Cai ◽  
Limin Hu ◽  
Yang Yang ◽  
Olalekan Amoo ◽  
...  

2020 ◽  
Vol 21 (4) ◽  
pp. 1345
Author(s):  
Qianxin Huang ◽  
Jinyang Lv ◽  
Yanyan Sun ◽  
Hongmei Wang ◽  
Yuan Guo ◽  
...  

The use of herbicides is an effective and economic way to control weeds, but their availability for rapeseed is limited due to the shortage of herbicide-resistant cultivars in China. The single-point mutation in the acetohydroxyacid synthase (AHAS) gene can lead to AHAS-inhibiting herbicide resistance. In this study, the inheritance and molecular characterization of the tribenuron-methyl (TBM)-resistant rapeseed (Brassica napus L.) mutant, K5, are performed. Results indicated that TBM-resistance of K5 was controlled by one dominant allele at a single nuclear gene locus. The novel substitution of cytosine with thymine at position 544 in BnAHAS1 was identified in K5, leading to the alteration of proline with serine at position 182 in BnAHAS1. The TBM-resistance of K5 was approximately 100 times that of its wild-type ZS9, and K5 also showed cross-resistance to bensufuron-methyl and monosulfuron-ester sodium. The BnAHAS1544T transgenic Arabidopsis exhibited higher TBM-resistance than that of its wild-type, which confirmed that BnAHAS1544T was responsible for the herbicide resistance of K5. Simultaneously, an allele-specific marker was developed to quickly distinguish the heterozygous and homozygous mutated alleles BnAHAS1544T. In addition, a method for the fast screening of TBM-resistant plants at the cotyledon stage was developed. Our research identified and molecularly characterized one novel mutative AHAS allele in B. napus and laid a foundation for developing herbicide-resistant rapeseed cultivars.


2007 ◽  
Vol 58 (8) ◽  
pp. 759 ◽  
Author(s):  
Yuanyuan Li ◽  
Jinxiong Shen ◽  
Tonghua Wang ◽  
Qingfang Chen ◽  
Xingguo Zhang ◽  
...  

Yield is one of the most important traits in Brassica napus breeding programs. Quantitative trait loci (QTLs) for yield-related traits based on genetic mapping would help breeders to develop high-yield cultivars. In this study, a genetic linkage map of B. napus, containing 142 sequence-related amplified polymorphism (SRAP) markers, 163 functional markers, 160 simple sequence repeat (SSR) markers, and 117 amplified fragment length polymorphism (AFLP) markers, was constructed in an F2 population of 184 individuals resulting from the cross SI-1300 × Eagle. This map covered 2054.51 cM with an average marker interval of 3.53 cM. Subsequently, QTLs were detected for 12 yield-related traits in Wuhan and Jingmen. In total, 133 QTLs were identified, including 14 consistent ones across the 2 locations. Fifteen of 20 linkage groups (LGs) were found to have QTLs for the 12 traits investigated, and most of the QTLs were clustered, especially on LGs N2 and N7, where similar QTL positions were identified for multiple traits. Eight of 10 QTLs for yield per plant (YP) were also associated with number of seeds per silique (SS), number of siliques per plant (SP), and/or 1000-seed weight (SW). In addition, 45 functional markers involved in 39 expressed sequence tags (ESTs) were linked to the QTLs of 12 traits. The present results may serve as a valuable basis for further molecular dissection of agronomic traits in B. napus, and the markers related to QTLs may offer promising possible makers for marker assisted selection.


2022 ◽  
Author(s):  
Elena Mikhaylova ◽  
Alexander Artyukhin ◽  
Michael Shein ◽  
Khalit Musin ◽  
Anna Sukhareva ◽  
...  

The Brassicaceae plant family contains many economically important crops such as Brassica napus L., Brassica rapa L., Brassica oleracea L., Brassica juncea L., Eruca sativa Mill., Camelina sativa L. and Raphanus sativus L. Insufficient data on the genetic regulation of agronomic traits in these species complicates the editing of their genomes. In recent years, the attention of the academic community has been drawn to anthocyanin hyperaccumulation. This trait is not only beneficial for human health, but can also increase plant resistance to stress. MYB transcription factors are the main regulators of flavonoid biosynthesis in plants. Some of them are well studied in Arabidopsis thaliana. The AtMYB60 gene is a transcriptional repressor of anthocyanin biosynthesis, and it also negatively impacts plant responses to drought stress. Myb60 is one of the least studied transcription factors with similar functions in Brassicaceae. There is a high degree of homology between predicted MYB60 genes of A. thaliana and related plant species. However, functions of these homologous genes have never been studied. Gene knockout by CRISPR/Cas technology remains the easiest way to perform genome editing in order to discover the role of individual plant genes. Disruption of genes acting as negative regulators of anthocyanin biosynthesis could result in color staining of plant tissues and an increase in stress tolerance. In the present study, we investigated the AtMYB60 gene and its homologs in Brassicaceae plants and suggested universal gRNAs to knockout these genes. Keywords: CRISPR, Brassicaceae, MYB60, knockout, anthocyanin


2021 ◽  
Vol 53 (3) ◽  
pp. 305-310
Author(s):  
Kwang-Soo Kim ◽  
Yong-Hwa Lee ◽  
Ji-Eun Lee ◽  
Young-Lok Cha ◽  
Da-Hee An ◽  
...  

2017 ◽  
Vol 30 (2) ◽  
pp. 29-34
Author(s):  
S. D. S. D. Joya ◽  
A. K. M. Shamsuddin ◽  
U. K. Nath

Genetic diversity in thirty eight traditional rapeseed genotypes was studied under favorable condition through Mahalanobis D2 statistic for yield and yield contributing characters. The genotypes were grouped into five clusters. The inter-cluster distances were higher than intracluster distances indicating wider genetic diversity among the clusters. The intra-cluster distances were lower in all the cases reflecting homogeneity of the genotypes within the clusters. Among the different cluster the genotypes of the cluster IV, III and I included were taller plant. The genotypes in the cluster III and IV had large size raceme. The genotypes in the cluster IV, III and V exhibited comparatively higher number of siliqua per raceme. Longer siliqua was noticed for the genotypes in the cluster III, IV and I. Higher number of seeds per siliqua noticed in clusters I, II and III. The genotypes of the cluster I and II produced bold size seed. The genotypes in the cluster V and I had high harvest index. The genotypes of the cluster III and I produced high seed yield per plant. Among the different cluster, the cluster III included the genotypes which had high yield, higher number of seeds per siliqua, longer siliqua, siliqua number per raceme and high plant height. Moreover these cluster displayed wide divergence with the genotypes of cluster V. The genotypes of the cluster V had the highest harvest index therefore selection of the parental material for crossing program for improvement of yield in rapeseed is suggested from these two clusters.


Water ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1730 ◽  
Author(s):  
Hakan Kadioglu ◽  
Harlene Hatterman-Valenti ◽  
Xinhua Jia ◽  
Xuefeng Chu ◽  
Hakan Aslan ◽  
...  

Lysimeter experiments were conducted under greenhouse conditions to investigate canola (Brassica napus L.) plant water use, growth, and yield parameters for three different water table depths of 30, 60, and 90 cm. Additionally, control experiments were conducted, and only irrigation was applied to these lysimeters without water table limitations. The canola plant’s tolerance level to shallow groundwater was determined. Results showed that groundwater contributions to canola plant for the treatments at 30, 60, and 90 cm water table depths were 97%, 71%, and 68%, respectively, while the average grain yields of canola were 4.5, 5.3, and 6.3 gr, respectively. These results demonstrate that a 90 cm water table depth is the optimum depth for canola plants to produce a high yield with the least amount of water utilization.


2016 ◽  
Vol 67 (4) ◽  
pp. 397 ◽  
Author(s):  
R. J. French ◽  
M. Seymour ◽  
R. S. Malik

In 24 experiments conducted across a range of agricultural environments in Western Australia between 2010 and 2014 canola (Brassica napus L.) grain yield response to crop density was adequately described by an asymptotic model (where yield approaches but never quite reaches a ceiling at very high density) in 101 out of 112 individual responses; in the other 11 yield reached a maximum and declined slightly at higher densities. Seed oil was more likely to increase than decrease with increasing density but the effect was always small; less than 1% oil over the range of densities tested. Increasing density also suppressed annual ryegrass (Lolium rigidum (L.) Gaud.) head numbers in six experiments where it was measured, especially at densities below 20 plants/m². Economic optimum densities ranged from 7 to 180 plants/m², with a median of 32.2. Mean optima in low and medium rainfall zones (growing season rainfall <300 mm) were about 25, 30, and 75 plants/m² respectively for glyphosate-tolerant (Roundup Ready), hybrid triazine-tolerant (TT), and open-pollinated TT cultivars, assuming open-pollinated TT cultivars were grown from farm-saved seed. There was little difference between optimum densities for hybrid and open-pollinated glyphosate-tolerant cultivars, and optima in the high rainfall zone were about 10 plants/m² higher than in low and medium rainfall zones. Yield at optimum density was greater than 90% of maximum yield in 74% of cases. The economic penalty for not achieving the optimum density with hybrids was usually small if the deviation was less than 10 plants/m², and with open-pollinated TT cultivars was small even 50-60 plants/m² below the optimum. The penalty was usually greater for deviations below than above the optimum in medium and high yield potential environments (yield potential >1000 kg/ha). Predicted optima were more sensitive to seed cost and field establishment (the proportion of viable seeds that become established) than grain price or seed size over the range of values expected in Western Australian agriculture. Field establishment varied from 0.3 to 1 and was higher at low target densities and for hybrid compared with open-pollinated cultivars, with a median of 0.585 at a target density of 40 plants/m². We identified improving field establishment of canola as an important research priority.


Sign in / Sign up

Export Citation Format

Share Document